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A Short Intro to QC

Digital computation with superposition
Applications: physics, chemistry, cryptography, finance...
IBM Eagle (2021): 127 Quantum Bits

Warm-up: probabilistic computation

States:
[

1
0

]
,

[
0
1

]
,

[
1/2
1/2

]
,

[
2/3
1/3

]
→ p⃗ ∈ R2n

+ , |p⃗|1 = 1

Transformations:
[

0 1
1 0

]
,

[
1/2 1/2
1/2 1/2

]
,

[
1 1/2
0 1/2

]
→ |Mp⃗|1 = 1
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Grover’s algorithm

All dynamics take place in 2d subspace span(ψ⃗, ϕ⃗) ∈ C2n

Operations: Zψ = ψ⃗ψ⃗∗ − I and Zϕ = ϕ⃗ϕ⃗∗ − I

Ψ

φ

φ

θ

Amplitude amplification: transform ψ⃗ → ϕ⃗ in O(|ψ⃗∗ϕ⃗|−1)

Applications: Search, Ground state and thermal state preparation

Amplitude estimation: estimate a := |ψ⃗∗ϕ⃗| = sin(θ) to accuracy ε in O(ε−1)

Applications: Monte Carlo estimation, partition function estimation
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Grover’s algorithm
Algorithm idea:

1 Start in the state ψ⃗
2 Alternatingly apply reflections Zϕ and Zψ n times
3 Collapse the superposition in the ϕ⃗, ϕ⃗⊥ basis

Pr[obtain ϕ⃗] =
∣∣∣ϕ⃗∗(ZψZϕ)nψ⃗∣∣∣2

= |T2n+1(a)|2

Td(x) = d’th Chebyshev polynomial

Grover’s algorithm
Given ψ⃗ or ψ⃗⊥, prepare either ϕ⃗ or ϕ⃗⊥ with probability
p = |T2n+1(a)|2 using O(n) operations.

p

p

1-p

1-p

Ψ

Ψ φ

φ

Patrick Rall, Bryce Fuller QSPAE September 2022 5 / 22



Grover’s algorithm
Algorithm idea:

1 Start in the state ψ⃗

2 Alternatingly apply reflections Zϕ and Zψ n times
3 Collapse the superposition in the ϕ⃗, ϕ⃗⊥ basis

Pr[obtain ϕ⃗] =
∣∣∣ϕ⃗∗(ZψZϕ)nψ⃗∣∣∣2

= |T2n+1(a)|2

Td(x) = d’th Chebyshev polynomial

Grover’s algorithm
Given ψ⃗ or ψ⃗⊥, prepare either ϕ⃗ or ϕ⃗⊥ with probability
p = |T2n+1(a)|2 using O(n) operations.

p

p

1-p

1-p

Ψ

Ψ φ

φ

Patrick Rall, Bryce Fuller QSPAE September 2022 5 / 22



Grover’s algorithm
Algorithm idea:

1 Start in the state ψ⃗
2 Alternatingly apply reflections Zϕ and Zψ n times

3 Collapse the superposition in the ϕ⃗, ϕ⃗⊥ basis

Pr[obtain ϕ⃗] =
∣∣∣ϕ⃗∗(ZψZϕ)nψ⃗∣∣∣2

= |T2n+1(a)|2

Td(x) = d’th Chebyshev polynomial

Grover’s algorithm
Given ψ⃗ or ψ⃗⊥, prepare either ϕ⃗ or ϕ⃗⊥ with probability
p = |T2n+1(a)|2 using O(n) operations.

p

p

1-p

1-p

Ψ

Ψ φ

φ

Patrick Rall, Bryce Fuller QSPAE September 2022 5 / 22



Grover’s algorithm
Algorithm idea:

1 Start in the state ψ⃗
2 Alternatingly apply reflections Zϕ and Zψ n times
3 Collapse the superposition in the ϕ⃗, ϕ⃗⊥ basis

Pr[obtain ϕ⃗] =
∣∣∣ϕ⃗∗(ZψZϕ)nψ⃗∣∣∣2

= |T2n+1(a)|2

Td(x) = d’th Chebyshev polynomial

Grover’s algorithm
Given ψ⃗ or ψ⃗⊥, prepare either ϕ⃗ or ϕ⃗⊥ with probability
p = |T2n+1(a)|2 using O(n) operations.

p

p

1-p

1-p

Ψ

Ψ φ

φ

Patrick Rall, Bryce Fuller QSPAE September 2022 5 / 22



Grover’s algorithm
Algorithm idea:

1 Start in the state ψ⃗
2 Alternatingly apply reflections Zϕ and Zψ n times
3 Collapse the superposition in the ϕ⃗, ϕ⃗⊥ basis

Pr[obtain ϕ⃗] =
∣∣∣ϕ⃗∗(ZψZϕ)nψ⃗∣∣∣2

= |T2n+1(a)|2

Td(x) = d’th Chebyshev polynomial

Grover’s algorithm
Given ψ⃗ or ψ⃗⊥, prepare either ϕ⃗ or ϕ⃗⊥ with probability
p = |T2n+1(a)|2 using O(n) operations.

p

p

1-p

1-p

Ψ

Ψ φ

φ

Patrick Rall, Bryce Fuller QSPAE September 2022 5 / 22



Grover’s algorithm
Algorithm idea:

1 Start in the state ψ⃗
2 Alternatingly apply reflections Zϕ and Zψ n times
3 Collapse the superposition in the ϕ⃗, ϕ⃗⊥ basis

Pr[obtain ϕ⃗] =
∣∣∣ϕ⃗∗(ZψZϕ)nψ⃗∣∣∣2

= |T2n+1(a)|2

Td(x) = d’th Chebyshev polynomial

Grover’s algorithm
Given ψ⃗ or ψ⃗⊥, prepare either ϕ⃗ or ϕ⃗⊥ with probability
p = |T2n+1(a)|2 using O(n) operations.

p

p

1-p

1-p

Ψ

Ψ φ

φ

Patrick Rall, Bryce Fuller QSPAE September 2022 5 / 22



Grover’s algorithm
Algorithm idea:

1 Start in the state ψ⃗
2 Alternatingly apply reflections Zϕ and Zψ n times
3 Collapse the superposition in the ϕ⃗, ϕ⃗⊥ basis

Pr[obtain ϕ⃗] =
∣∣∣ϕ⃗∗(ZψZϕ)nψ⃗∣∣∣2

= |T2n+1(a)|2

Td(x) = d’th Chebyshev polynomial

Grover’s algorithm
Given ψ⃗ or ψ⃗⊥, prepare either ϕ⃗ or ϕ⃗⊥ with probability
p = |T2n+1(a)|2 using O(n) operations.

p

p

1-p

1-p

Ψ

Ψ φ

φ

Patrick Rall, Bryce Fuller QSPAE September 2022 5 / 22



Grover’s algorithm
Algorithm idea:

1 Start in the state ψ⃗
2 Alternatingly apply reflections Zϕ and Zψ n times
3 Collapse the superposition in the ϕ⃗, ϕ⃗⊥ basis

Pr[obtain ϕ⃗] =
∣∣∣ϕ⃗∗(ZψZϕ)nψ⃗∣∣∣2

= |T2n+1(a)|2

Td(x) = d’th Chebyshev polynomial

Grover’s algorithm
Given ψ⃗ or ψ⃗⊥, prepare either ϕ⃗ or ϕ⃗⊥ with probability
p = |T2n+1(a)|2 using O(n) operations.

p

p

1-p

1-p

Ψ

Ψ φ

φ

Patrick Rall, Bryce Fuller QSPAE September 2022 5 / 22



Quantum Signal Processing

Alternating reflections ZψZϕ → Chebyshev polynomials Tn(a)

Alternating rotations eiθZψeiθ′Zϕ → more polynomials P(a)

Grover’s algorithm + Quantum Signal Processing
Say P(a) is a polynomial of degree d. Given ψ⃗ or ψ⃗⊥,
prepare either ϕ⃗, ϕ⃗⊥ with probability p = |P(a)|2
using O(d) operations.

p

p

1-p

1-p

Ψ

Ψ φ

φ

Goal: estimate a = |ψ⃗∗ϕ⃗| in as few operations as possible.
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Results

Puzzle: estimating a via polynomials
Say a ∈ [0,1] is unknown. For polynomials p : [0,1] → [0,1], you can
toss a coin with bias p(a)2 at cost deg(p).
Estimate a to precision ε while minimizing cost.

1 Fast estimation: Estimate a to precision ε in ≈ 1.7/ε
2 Non-destructive estimation: given exactly one input state ψ⃗
3 Hybrid quantum-classical estimation: cost O(1/ε1+β), but maximum polynomial

degree O(1/ε1−β)

4 Unbiased estimation: output an estimate â with E[â] ≈ a
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Fast estimation

Basic idea: Grinko et al. 1912.05559 . Achieves ≈ 2.62/ε

We achieve ≈ 1.7/ε by simplifying and fine-tuning their method

Method:
1 Initialize a confidence interval [amin,amax] = [0,1]
2 While amax − amin > 2ε:

1 Pick a Chebyshev polynomial |Tn(a)|2 that’s purely increasing/decreasing on [amin,amax]
2 Estimate p = |Tn(a)|2 to constant precision.
3 Use the estimate of p to improve the confidence interval.

3 Return the midpoint of [amin,amax].
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Fast estimation: Interval refinement

pmin

pmax

a *
min a

*
max

0 amin amax 1

a

0

1

T
5
(a

)

Shrinking a confidence interval by inverting T5(a)

2

2
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Fast estimation: Improved performance
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Results

Puzzle: estimating a via polynomials
Say a ∈ [0,1] is unknown. For polynomials p : [0,1] → [0,1], you can
toss a coin with bias p(a)2 at cost deg(p).
Estimate a to precision ε while minimizing cost.

1 Fast estimation: Estimate a to precision ε in ≈ 1.7/ε✓
2 Non-destructive estimation: given exactly one input state ψ⃗
3 Hybrid quantum-classical estimation: cost O(1/ε1+β), but maximum polynomial

degree O(1/ε1−β)

4 Unbiased estimation: output an estimate â with E[â] ≈ a
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Non-destructive Estimation

Grover’s algorithm + Quantum Signal Processing
Say P(a) is a polynomial of degree d. Then:

We can transform ψ⃗, ψ⃗⊥ → ϕ⃗, ϕ⃗⊥

We can transform ϕ⃗, ϕ⃗⊥ → ψ⃗, ψ⃗⊥

with p = |P(a)|2 using O(d) operations.
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Non-destructive Estimation
Main idea: add a repair step to an existing amplitude estimation algorithm.
(Assume a < 1/2 for simplicity.)

Lemma: post-algorithm state
Say we just ran an amplitude estimation algorithm,
and say the sum of all the degrees of the polynomials was D.
Then, if a <

√
δ/D then with probability ≥ 1 − δ we have either ψ⃗ or ϕ⃗⊥.

Method:
If we have ψ⃗, we are done.
If we have ψ⃗⊥, sample P(a) = a to get ϕ⃗ or ϕ⃗⊥

If we have ϕ⃗, we can assume a >
√
δ/D .

If we have ϕ⃗⊥, we leverage a < 1/2 .
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Converting ϕ⃗, ϕ⃗⊥ → ψ⃗

p

p

1-p

1-p

Ψ

Ψφ

φ

0.0 0.2 0.4 0.6 0.8 1.0

a

0.0

0.2

0.4

0.6

0.8

1.0

|P
(a
)|
2

Patrick Rall, Bryce Fuller QSPAE September 2022 14 / 22



Results

Puzzle: estimating a via polynomials
Say a ∈ [0,1] is unknown. For polynomials p : [0,1] → [0,1], you can
toss a coin with bias p(a)2 at cost deg(p).
Estimate a to precision ε while minimizing cost.

1 Fast estimation: Estimate a to precision ε in ≈ 1.7/ε✓
2 Non-destructive estimation: given exactly one input state ψ⃗ ✓
3 Hybrid quantum-classical estimation: cost O(1/ε1+β), but maximum polynomial

degree O(1/ε1−β)

4 Unbiased estimation: output an estimate â with E[â] ≈ a
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Hybrid quantum-classical estimation

Current quantum computers are noisy
→ can only run programs of a certain length
Program length ∼ polynomial degree
Can think of degree O(1) as classical limit

Max Degree Total Degree
Quantum O(1/ε) O(1/ε)
Classical O(1) O(1/ε2)

Hybrid β ∈ [0,1] O(1/ε1−β) O(1/ε1+β)

Problem was first posed by Giurgica-Tironc et al 2012.03348 .
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Amplitude estimation via interval refinement

Method:
1 Initialize a confidence interval [amin,amax] = [0,1]

2 While amax − amin > 2ε:

1 Let ∆ = amax − amin. Decide if:

a ∈ [amin + 0.1∆,amax] (case I)

a ∈ [amin,amax − 0.1∆] (case II)

2 If I, set amin to amin + 0.1∆. If II set amax to amax − 0.1∆.

3 Return the midpoint of [amin,amax].
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Interval refinement with limited degree

Decide using O(1/∆1−β) maximum degree and O(1/∆1+β) total degree:

a ∈ [amin + 0.1∆,amax] (case I)

a ∈ [amin,amax − 0.1∆] (case II)

Idea: Combine classical amplification with quantum polynomial degree.
Say we can build a polynomial p(a) such that:

a ≤ amin + 0.1∆ → p(a) ≤ 1
2
− γ

a ≥ amax − 0.1∆ → p(a) ≥ 1
2
+ γ

→ then we can distinguish I vs II in O(1/γ2) tries.
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Crafting a polynomial for interval refinement

amin amax

1/2

γ

slope ~ γ/Δ

Polynomial degree ∼ slope: O
( γ
∆

)
Total cost: O

(
1
γ2

γ
∆

)
.

Achieve O(1/∆1−β) maximum degree and O(1/∆1+β) total degree by selecting γ = ∆β .
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Results

Puzzle: estimating a via polynomials
Say a ∈ [0,1] is unknown. For polynomials p : [0,1] → [0,1], you can
toss a coin with bias p(a)2 at cost deg(p).
Estimate a to precision ε while minimizing cost.

1 Fast estimation: Estimate a to precision ε in ≈ 1.7/ε✓
2 Non-destructive estimation: given exactly one input state ψ⃗ ✓
3 Hybrid quantum-classical estimation: cost O(1/ε1+β), but maximum polynomial

degree O(1/ε1−β)✓
4 Unbiased estimation: output an estimate â with E[â] ≈ a

Patrick Rall, Bryce Fuller QSPAE September 2022 20 / 22



Unbiased estimation

Goal: sample from a random variable â such that:

E[â] ≈ a and Pr[|â− a| > ε] ≤ δ

Approach:
Say a ∈ [amin,amax] such that amax − amin < ε. Pick â = amax with probability

a− amin
amax − amin

,

otherwise pick â = amin. Then E[â] = a and |â− a| < ε.
Construct a polynomial p(a) such that p(a)2 ≈ a−amin

amax−amin
. Then E[â] ≈ a.

Apply a recursive argument to the interval refinement algorithm: if all intermediate â
satisfy E[â] ≈ a, then so does the algorithm as a whole.

Patrick Rall, Bryce Fuller QSPAE September 2022 21 / 22



Unbiased estimation

Goal: sample from a random variable â such that:
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E[â] ≈ a and Pr[|â− a| > ε] ≤ δ
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Thank you for your attention!
Special thanks to:

Stefan Woerner, Julien Gacon, and Giacomo Nannicini
John Martyn, Nikitas Stamatopoulos, and Pawel Wocjan

Contact us at patrickjrall@ibm.com, Bryce.Fuller@ibm.com
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