Amplitude Estimation based on Quantum Signal Processing

Patrick Rall, Bryce Fuller

arXiv:2207.08628

IBM Quantum

September 2022

- Digital computation with superposition
- Applications: physics, chemistry, cryptography, finance...
- IBM Eagle (2021): 127 Quantum Bits

- Digital computation with superposition
- Applications: physics, chemistry, cryptography, finance...
- IBM Eagle (2021): 127 Quantum Bits
- Warm-up: probabilistic computation

States:
$$\begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 1/2\\1/2 \end{bmatrix}, \begin{bmatrix} 2/3\\1/3 \end{bmatrix} \rightarrow \vec{p} \in \mathbb{R}^{2^n}_+, \ |\vec{p}|_1 = 1$$

- Digital computation with superposition
- Applications: physics, chemistry, cryptography, finance...
- IBM Eagle (2021): 127 Quantum Bits
- Warm-up: probabilistic computation

States:
$$\begin{bmatrix} 1\\0 \end{bmatrix}$$
, $\begin{bmatrix} 0\\1 \end{bmatrix}$, $\begin{bmatrix} 1/2\\1/2 \end{bmatrix}$, $\begin{bmatrix} 2/3\\1/3 \end{bmatrix}$ $\rightarrow \vec{p} \in \mathbb{R}^{2^n}_+$, $|\vec{p}|_1 = 1$
Transformations: $\begin{bmatrix} 0&1\\1&0 \end{bmatrix}$, $\begin{bmatrix} 1/2&1/2\\1/2&1/2 \end{bmatrix}$, $\begin{bmatrix} 1&1/2\\0&1/2 \end{bmatrix}$ $\rightarrow |M\vec{p}|_1 = 1$

States:
$$\begin{bmatrix} 1\\0 \end{bmatrix}$$
, $\begin{bmatrix} 0\\1 \end{bmatrix}$, $\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$, $\frac{1}{\sqrt{2}} \begin{bmatrix} +1\\-1 \end{bmatrix} \rightarrow \vec{\psi} \in \mathbb{C}^{2^n}$, $|\vec{\psi}|_2 = 1$

States:
$$\begin{bmatrix} 1\\0 \end{bmatrix}$$
, $\begin{bmatrix} 0\\1 \end{bmatrix}$, $\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$, $\frac{1}{\sqrt{2}} \begin{bmatrix} +1\\-1 \end{bmatrix}$ $\rightarrow \vec{\psi} \in \mathbb{C}^{2^n}$, $|\vec{\psi}|_2 = 1$
Transformations: $\begin{bmatrix} 0&1\\1&0 \end{bmatrix}$, $\frac{1}{\sqrt{2}} \begin{bmatrix} 1&1\\1&-1 \end{bmatrix}$, $\frac{1}{\sqrt{2}} \begin{bmatrix} 1&1\\1&1 \end{bmatrix}$ $\rightarrow |M\vec{\psi}|_2 = 1$

States:
$$\begin{bmatrix} 1\\0 \end{bmatrix}$$
, $\begin{bmatrix} 0\\1 \end{bmatrix}$, $\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$, $\frac{1}{\sqrt{2}} \begin{bmatrix} +1\\-1 \end{bmatrix}$ $\rightarrow \vec{\psi} \in \mathbb{C}^{2^n}$, $|\vec{\psi}|_2 = 1$
Transformations: $\begin{bmatrix} 0&1\\1&0 \end{bmatrix}$, $\frac{1}{\sqrt{2}} \begin{bmatrix} 1&1\\1&-1 \end{bmatrix}$, $\frac{1}{\sqrt{2}} \begin{bmatrix} 1&1\\1&1 \end{bmatrix}$ $\rightarrow |M\vec{\psi}|_2 = 1$

IBM **Quantum**

• All dynamics take place in 2d subspace $\mathrm{span}(ec{\psi},ec{\phi})\in\mathbb{C}^{2^n}$

- All dynamics take place in 2d subspace span $(ec{\psi},ec{\phi})\in\mathbb{C}^{2^n}$
- Operations: $Z_\psi = ec\psi ec\psi^* I$ and $Z_\phi = ec\phi ec\phi^* I$

- All dynamics take place in 2d subspace $\text{span}(ec{\psi},ec{\phi})\in\mathbb{C}^{2^n}$
- Operations: $Z_\psi=ec\psiec\psi^*-I$ and $Z_\phi=ec\phiec\phi^*-I$

IBM Quantum

- All dynamics take place in 2d subspace ${
 m span}(ec{\psi},ec{\phi})\in \mathbb{C}^{2^n}$
- Operations: $Z_\psi = ec\psi ec\psi^* I$ and $Z_\phi = ec\phi ec\phi^* I$

• Amplitude amplification: transform $\vec{\psi} \rightarrow \vec{\phi}$ in $O(|\vec{\psi^*}\vec{\phi}|^{-1})$

- All dynamics take place in 2d subspace ${
 m span}(ec{\psi},ec{\phi})\in \mathbb{C}^{2^n}$
- Operations: $Z_\psi = ec\psi ec\psi^* I$ and $Z_\phi = ec\phi ec\phi^* I$

- Amplitude amplification: transform $\vec{\psi} \rightarrow \vec{\phi}$ in $O(|\vec{\psi^*}\vec{\phi}|^{-1})$
 - Applications: Search, Ground state and thermal state preparation

- All dynamics take place in 2d subspace $ext{span}(ec{\psi},ec{\phi})\in\mathbb{C}^{2^n}$
- Operations: $Z_{\psi} = ec{\psi}ec{\psi}^* I$ and $Z_{\phi} = ec{\phi}ec{\phi}^* I$

- Amplitude amplification: transform $\vec{\psi} \rightarrow \vec{\phi}$ in $O(|\vec{\psi^*}\vec{\phi}|^{-1})$
 - Applications: Search, Ground state and thermal state preparation
- Amplitude estimation: estimate $a := |\vec{\psi}^* \vec{\phi}| = \sin(\theta)$ to accuracy ε in $O(\varepsilon^{-1})$

- All dynamics take place in 2d subspace $ext{span}(ec{\psi},ec{\phi})\in\mathbb{C}^{2^n}$
- Operations: $Z_\psi = ec\psi ec\psi^* I$ and $Z_\phi = ec\phi ec\phi^* I$

- Amplitude amplification: transform $\vec{\psi} \rightarrow \vec{\phi}$ in $O(|\vec{\psi^*}\vec{\phi}|^{-1})$
 - Applications: Search, Ground state and thermal state preparation
- Amplitude estimation: estimate $a := |\vec{\psi}^* \vec{\phi}| = \sin(\theta)$ to accuracy ε in $O(\varepsilon^{-1})$
 - Applications: Monte Carlo estimation, partition function estimation

Algorithm idea:

IBM Quantum

Algorithm idea:

• Start in the state $\vec{\psi}$

IBM Quantum

Algorithm idea:

- (1) Start in the state $\vec{\psi}$
- 2 Alternatingly apply reflections Z_{ϕ} and Z_{ψ} *n* times

IBM Quantum

Algorithm idea:

- (1) Start in the state $ec{\psi}$
- 2 Alternatingly apply reflections Z_{ϕ} and Z_{ψ} *n* times
- ${igsia 0}$ Collapse the superposition in the $ec{\phi},ec{\phi}^{\perp}$ basis

IBM Quantum

Algorithm idea:

- (1) Start in the state $ec{\psi}$
- 2 Alternatingly apply reflections Z_{ϕ} and Z_{ψ} *n* times
- ${igsim}$ Collapse the superposition in the $ec{\phi},ec{\phi}^{\perp}$ basis

$$\mathsf{Pr}[\mathsf{obtain}\;ec{\phi}] = \left|ec{\phi}^* (Z_\psi Z_\phi)^n ec{\psi}
ight|^2$$

Algorithm idea:

- (1) Start in the state $ec{\psi}$
- 2 Alternatingly apply reflections Z_{ϕ} and Z_{ψ} *n* times
- ${f O}$ Collapse the superposition in the ${f \phi}, {f \phi}^\perp$ basis

$$\begin{aligned} & \Pr[\text{obtain } \vec{\phi}] = \left| \vec{\phi}^* (Z_{\psi} Z_{\phi})^n \vec{\psi} \right|^2 \\ &= |T_{2n+1}(a)|^2 \\ & T_d(x) = d' \text{th Chebyshev polynomial} \end{aligned}$$

Algorithm idea:

- (1) Start in the state $ec{\psi}$
- 2 Alternatingly apply reflections Z_{ϕ} and Z_{ψ} *n* times
- ${f O}$ Collapse the superposition in the ${f \phi}, {f \phi}^\perp$ basis

$$\begin{aligned} & \Pr[\text{obtain } \vec{\phi}] = \left| \vec{\phi}^* (Z_{\psi} Z_{\phi})^n \vec{\psi} \right|^2 \\ &= |T_{2n+1}(a)|^2 \\ & T_d(x) = d' \text{th Chebyshev polynomial} \end{aligned}$$

Algorithm idea:

- (1) Start in the state $ec{\psi}$
- 2 Alternatingly apply reflections Z_{ϕ} and Z_{ψ} *n* times
- ${f 3}$ Collapse the superposition in the $ec{\phi},ec{\phi}^{\perp}$ basis

$$\begin{aligned} \Pr[\text{obtain } \vec{\phi}] &= \left| \vec{\phi}^* (Z_{\psi} Z_{\phi})^n \vec{\psi} \right|^2 \\ &= |T_{2n+1}(\alpha)|^2 \\ T_d(x) &= d'\text{th Chebyshev polynomial} \end{aligned}$$

Grover's algorithm

Given $\vec{\psi}$ or $\vec{\psi}^{\perp}$, prepare either $\vec{\phi}$ or $\vec{\phi}^{\perp}$ with probability $p = |T_{2n+1}(\alpha)|^2$ using O(n) operations.

• Alternating reflections $Z_{\psi}Z_{\phi} \rightarrow$ Chebyshev polynomials $T_n(a)$

- Alternating reflections $Z_{\psi}Z_{\phi} \rightarrow$ Chebyshev polynomials $T_n(a)$
- Alternating rotations $e^{i\theta Z_{\psi}}e^{i\theta' Z_{\phi}} \rightarrow$ more polynomials P(a)

- Alternating reflections $Z_{\psi}Z_{\phi} \rightarrow$ Chebyshev polynomials $T_n(a)$
- Alternating rotations $e^{i\theta Z_{\psi}}e^{i\theta' Z_{\phi}} \rightarrow$ more polynomials P(a)

Grover's algorithm + Quantum Signal Processing

Say P(a) is a polynomial of degree d. Given $\vec{\psi}$ or $\vec{\psi}^{\perp}$, prepare either $\vec{\phi}, \vec{\phi}^{\perp}$ with probability $p = |P(a)|^2$ using O(d) operations.

- Alternating reflections $Z_{\psi}Z_{\phi} \rightarrow$ Chebyshev polynomials $T_n(a)$
- Alternating rotations $e^{i\theta Z_{\psi}}e^{i\theta' Z_{\phi}} \rightarrow$ more polynomials P(a)

IBM **Quantum**

• Goal: estimate $a = |\vec{\psi}^* \vec{\phi}|$ in as few operations as possible.

Say $a \in [0, 1]$ is unknown. For polynomials $p : [0, 1] \rightarrow [0, 1]$, you can toss a coin with bias $p(a)^2$ at cost deg(p). Estimate a to precision ε while minimizing cost.

) Fast estimation: Estimate *a* to precision ε in \approx 1.7/ ε

- **9** Fast estimation: Estimate α to precision ε in $\approx 1.7/\varepsilon$
- ② Non-destructive estimation: given exactly one input state $ec{\psi}$

- **9** Fast estimation: Estimate α to precision ε in \approx **1**.7/ ε
- ② Non-destructive estimation: given exactly one input state $ec{\psi}$
- Output: Second Seco

- **9** Fast estimation: Estimate *a* to precision ε in \approx 1.7/ ε
- ② Non-destructive estimation: given exactly one input state $ec{\psi}$
- Solution: O(1/ε^{1+β}), but maximum polynomial degree O(1/ε^{1-β})
- ④ Unbiased estimation: output an estimate \hat{a} with $\mathbb{E}[\hat{a}] pprox a$

• Basic idea: Grinko et al. 1912.05559. Achieves $\approx 2.62/\varepsilon$

- Basic idea: Grinko et al. (1912.05559). Achieves $\approx 2.62/\varepsilon$
- We achieve \approx 1.7/ ε by simplifying and fine-tuning their method

- Basic idea: Grinko et al. (1912.05559). Achieves $\approx 2.62/\varepsilon$
- We achieve \approx 1.7/ ε by simplifying and fine-tuning their method

Method:

Initialize a confidence interval $[a_{\min}, a_{\max}] = [0, 1]$

- Basic idea: Grinko et al. (1912.05559). Achieves $\approx 2.62/\varepsilon$
- We achieve \approx 1.7/ ε by simplifying and fine-tuning their method

Method:

- Initialize a confidence interval $[a_{\min}, a_{\max}] = [0, 1]$
- 2 While $a_{\max} a_{\min} > 2\varepsilon$:

- Basic idea: Grinko et al. (1912.05559). Achieves \approx 2.62/arepsilon
- We achieve \approx 1.7/ ε by simplifying and fine-tuning their method

Method:

- Initialize a confidence interval $[a_{\min}, a_{\max}] = [0, 1]$
- 2 While $a_{\max} a_{\min} > 2\varepsilon$:
 - Pick a Chebyshev polynomial $|T_n(\alpha)|^2$ that's purely increasing/decreasing on $[a_{\min}, a_{\max}]$
- Basic idea: Grinko et al. (1912.05559). Achieves \approx 2.62/arepsilon
- We achieve \approx 1.7/ ε by simplifying and fine-tuning their method

- Initialize a confidence interval $[a_{\min}, a_{\max}] = [0, 1]$
- 2 While $a_{\max} a_{\min} > 2\varepsilon$:
 - Pick a Chebyshev polynomial $|T_n(a)|^2$ that's purely increasing/decreasing on $[a_{\min}, a_{\max}]$
 - 2 Estimate $p = |T_n(a)|^2$ to constant precision.

- Basic idea: Grinko et al. 1912.05559. Achieves $\approx 2.62/\varepsilon$
- We achieve \approx 1.7/ ε by simplifying and fine-tuning their method

- Initialize a confidence interval $[a_{\min}, a_{\max}] = [0, 1]$
- 2 While $a_{\max} a_{\min} > 2\varepsilon$:
 - Pick a Chebyshev polynomial $|T_n(a)|^2$ that's purely increasing/decreasing on $[a_{\min}, a_{\max}]$
 - 2 Estimate $p = |T_n(a)|^2$ to constant precision.
 - Use the estimate of *p* to improve the confidence interval.

- Basic idea: Grinko et al. 1912.05559. Achieves $\approx 2.62/arepsilon$
- We achieve \approx 1.7/ ε by simplifying and fine-tuning their method

- Initialize a confidence interval $[a_{\min}, a_{\max}] = [0, 1]$
- 2 While $a_{\max} a_{\min} > 2\varepsilon$:
 - Pick a Chebyshev polynomial $|T_n(a)|^2$ that's purely increasing/decreasing on $[a_{\min}, a_{\max}]$
 - 2 Estimate $p = |T_n(a)|^2$ to constant precision.
 - Use the estimate of *p* to improve the confidence interval.
- 3 Return the midpoint of $[a_{\min}, a_{\max}]$.

Shrinking a confidence interval by inverting $|T_5(a)|^2$ 0 n amin **a**_{max}

 $|T_5(a)|^2$

а

Shrinking a confidence interval by inverting $|T_5(a)|^2$ 1 p_{max} $|T_5(a)|^2$ p_{min} 0 n a_{min} a_{max}

Shrinking a confidence interval by inverting $|T_5(a)|^2$ 1 p_{max} $|T_5(a)|^2$ p_{min} 0 Ω amin a_{max} 1

Shrinking a confidence interval by inverting $|T_5(a)|^2$ 1 p_{max} $|T_5(a)|^2$ p_{min} 0 $a_{min}a_{min}^*a_{max}^*a_{max}$ 0 1

Fast estimation: Improved performance

Performance Improvement Grinko et al's IQAE vs this work's ChebAE ChebAE IQAE 107 106 Cost 105 10^{4} 10³ 10² 10-3 10-5 10^{-6} 10^{-2} 10^{-4} Accuracy ε

Patrick Rall, Bryce Fuller

Puzzle: estimating *a* via polynomials

Say $a \in [0, 1]$ is unknown. For polynomials $p : [0, 1] \rightarrow [0, 1]$, you can toss a coin with bias $p(a)^2$ at cost deg(p). Estimate a to precision ε while minimizing cost.

- **9** Fast estimation: Estimate α to precision ε in $\approx 1.7/\varepsilon \checkmark$
- ② Non-destructive estimation: given exactly one input state $ec{\psi}$
- Solution: Output: Output:
- ④ Unbiased estimation: output an estimate \hat{a} with $\mathbb{E}[\hat{a}] pprox a$

Grover's algorithm + Quantum Signal Processing

Say P(a) is a polynomial of degree d. Then:

- We can transform $\vec{\psi}, \vec{\psi}^\perp \rightarrow \vec{\phi}, \vec{\phi}^\perp$
- We can transform $\vec{\phi}, \vec{\phi}^\perp \rightarrow \vec{\psi}, \vec{\psi}^\perp$

with $p = |P(a)|^2$ using O(d) operations.

- IBM Quantum
- Main idea: add a *repair step* to an existing amplitude estimation algorithm. (Assume a < 1/2 for simplicity.)

IBM Quantum

 Main idea: add a *repair step* to an existing amplitude estimation algorithm. (Assume a < 1/2 for simplicity.)

Lemma: post-algorithm state

Say we just ran an amplitude estimation algorithm, and say the sum of all the degrees of the polynomials was *D*. Then, if $a < \sqrt{\delta}/D$ then with probability $\geq 1 - \delta$ we have either $\vec{\psi}$ or $\vec{\phi}^{\perp}$.

 Main idea: add a *repair step* to an existing amplitude estimation algorithm. (Assume a < 1/2 for simplicity.)

Lemma: post-algorithm state

Say we just ran an amplitude estimation algorithm, and say the sum of all the degrees of the polynomials was *D*. Then, if $a < \sqrt{\delta}/D$ then with probability $\geq 1 - \delta$ we have either $\vec{\psi}$ or $\vec{\phi}^{\perp}$.

 Main idea: add a *repair step* to an existing amplitude estimation algorithm. (Assume a < 1/2 for simplicity.)

Lemma: post-algorithm state

Say we just ran an amplitude estimation algorithm, and say the sum of all the degrees of the polynomials was *D*. Then, if $a < \sqrt{\delta}/D$ then with probability $\geq 1 - \delta$ we have either $\vec{\psi}$ or $\vec{\phi}^{\perp}$.

Method:

• If we have $\vec{\psi}$, we are done.

 Main idea: add a *repair step* to an existing amplitude estimation algorithm. (Assume a < 1/2 for simplicity.)

Lemma: post-algorithm state

Say we just ran an amplitude estimation algorithm, and say the sum of all the degrees of the polynomials was *D*. Then, if $a < \sqrt{\delta}/D$ then with probability $\geq 1 - \delta$ we have either $\vec{\psi}$ or $\vec{\phi}^{\perp}$.

- If we have $\vec{\psi}$, we are done.
- If we have $ec{\psi^{\perp}}$, sample P(a)=a to get $ec{\phi}$ or $ec{\phi^{\perp}}$

 Main idea: add a *repair step* to an existing amplitude estimation algorithm. (Assume a < 1/2 for simplicity.)

Lemma: post-algorithm state

Say we just ran an amplitude estimation algorithm, and say the sum of all the degrees of the polynomials was *D*. Then, if $a < \sqrt{\delta}/D$ then with probability $\geq 1 - \delta$ we have either $\vec{\psi}$ or $\vec{\phi}^{\perp}$.

- If we have $\vec{\psi}$, we are done.
- If we have $ec{\psi^{\perp}}$, sample P(a)=a to get $ec{\phi}$ or $ec{\phi^{\perp}}$
- If we have $ec{\phi}$, we can assume $a > \sqrt{\delta}/D$.

 Main idea: add a *repair step* to an existing amplitude estimation algorithm. (Assume a < 1/2 for simplicity.)

Lemma: post-algorithm state

Say we just ran an amplitude estimation algorithm, and say the sum of all the degrees of the polynomials was *D*. Then, if $a < \sqrt{\delta}/D$ then with probability $\geq 1 - \delta$ we have either $\vec{\psi}$ or $\vec{\phi}^{\perp}$.

- If we have $\vec{\psi}$, we are done.
- If we have $ec{\psi}^{\perp}$, sample P(a)=a to get $ec{\phi}$ or $ec{\phi}^{\perp}$
- If we have $ec{\phi}$, we can assume $a > \sqrt{\delta}/D$.
- If we have $\vec{\phi}^{\perp},$ we leverage $a < {\rm 1/2}$.

Converting $\vec{\phi}, \vec{\phi^{\perp}} \rightarrow \vec{\psi}$

Puzzle: estimating *a* via polynomials

Say $a \in [0, 1]$ is unknown. For polynomials $p : [0, 1] \rightarrow [0, 1]$, you can toss a coin with bias $p(a)^2$ at cost deg(p). Estimate a to precision ε while minimizing cost.

- **9** Fast estimation: Estimate α to precision ε in $\approx 1.7/\varepsilon \checkmark$
- ② Non-destructive estimation: given exactly one input state $ec{\psi}$ 🗸
- Solution: O(1/ε^{1+β}), but maximum polynomial degree O(1/ε^{1-β})
- ${f 0}$ Unbiased estimation: output an estimate \hat{a} with $\mathbb{E}[\hat{a}]pprox a$

Hybrid quantum-classical estimation

- Current quantum computers are noisy
 → can only run programs of a certain length
- Program length \sim polynomial degree
- Can think of degree O(1) as classical limit

Hybrid quantum-classical estimation

IBM Quantum

- Current quantum computers are noisy
 → can only run programs of a certain length
- Program length \sim polynomial degree
- Can think of degree O(1) as classical limit

		Max Degree	Total Degree
	Quantum	O(1/arepsilon)	O(1/arepsilon)
	Classical	<i>O</i> (1)	$O(1/arepsilon^2)$
Hybrid	$eta \in [0,1]$	$O(1/arepsilon^{1-eta})$	$\mathit{O}(1/arepsilon^{1+eta})$

Problem was first posed by Giurgica-Tironc et al 2012.03348.

Initialize a confidence interval $[a_{\min}, a_{\max}] = [0, 1]$

- Initialize a confidence interval $[a_{\min}, a_{\max}] = [0, 1]$
- 2 While $a_{\max} a_{\min} > 2\varepsilon$:

- Initialize a confidence interval $[a_{\min}, a_{\max}] = [0, 1]$
- 2 While $a_{\max} a_{\min} > 2\varepsilon$:
 - Let $\Delta = a_{max} a_{min}$. Decide if:

$$a \in [a_{\min} + 0.1\Delta, a_{\max}]$$
 (case I)
 $a \in [a_{\min}, a_{\max} - 0.1\Delta]$ (case II)

- Initialize a confidence interval $[a_{\min}, a_{\max}] = [0, 1]$
- 2 While $a_{\max} a_{\min} > 2\varepsilon$:
 - Let $\Delta = a_{max} a_{min}$. Decide if:

$$a \in [a_{\min} + 0.1\Delta, a_{\max}]$$
 (case I)

$$a \in [a_{\min}, a_{\max} - 0.1\Delta]$$
 (case II)

2 If I, set a_{\min} to $a_{\min} + 0.1\Delta$. If II set a_{\max} to $a_{\max} - 0.1\Delta$.

- Initialize a confidence interval $[a_{\min}, a_{\max}] = [0, 1]$
- 2 While $a_{\max} a_{\min} > 2\varepsilon$:
 - Let $\Delta = a_{\max} a_{\min}$. Decide if:

$$a \in [a_{\min} + 0.1\Delta, a_{\max}]$$
 (case I)

$$a \in [a_{\min}, a_{\max} - 0.1\Delta]$$
 (case II)

2 If I, set a_{\min} to $a_{\min} + 0.1\Delta$. If II set a_{\max} to $a_{\max} - 0.1\Delta$.

Seturn the midpoint of $[a_{\min}, a_{\max}]$.

Interval refinement with limited degree

IBM Quantum

• Decide using $O(1/\Delta^{1-\beta})$ maximum degree and $O(1/\Delta^{1+\beta})$ total degree:

$$a \in [a_{\min} + 0.1\Delta, a_{\max}]$$
 (case I)

$$a \in [a_{\min}, a_{\max} - 0.1\Delta]$$
 (case II)

Interval refinement with limited degree

• Decide using $O(1/\Delta^{1-\beta})$ maximum degree and $O(1/\Delta^{1+\beta})$ total degree:

 $a \in [a_{\min} + 0.1\Delta, a_{\max}]$ (case I)

 $a \in [a_{\min}, a_{\max} - 0.1\Delta]$ (case II)

• Idea: Combine classical amplification with quantum polynomial degree.

Interval refinement with limited degree

• Decide using $O(1/\Delta^{1-\beta})$ maximum degree and $O(1/\Delta^{1+\beta})$ total degree:

$$a \in [a_{\min} + 0.1\Delta, a_{\max}]$$
 (case I)

$$a \in [a_{\min}, a_{\max} - 0.1\Delta]$$
 (case II)

• Idea: Combine classical amplification with quantum polynomial degree.

• Say we can build a polynomial p(a) such that:

$$egin{array}{lll} a\leq a_{\min}+0.1\Delta &
ightarrow \ p(a)\leq rac{1}{2}-\gamma \ a\geq a_{\max}-0.1\Delta &
ightarrow \ p(a)\geq rac{1}{2}+\gamma \end{array}$$

 \rightarrow then we can distinguish I vs II in $O(1/\gamma^2)$ tries.

Crafting a polynomial for interval refinement

Crafting a polynomial for interval refinement

Crafting a polynomial for interval refinement

Achieve $O(1/\Delta^{1-\beta})$ maximum degree and $O(1/\Delta^{1+\beta})$ total degree by selecting $\gamma = \Delta^{\beta}$.

Puzzle: estimating *a* via polynomials

Say $a \in [0, 1]$ is unknown. For polynomials $p : [0, 1] \rightarrow [0, 1]$, you can toss a coin with bias $p(a)^2$ at cost deg(p). Estimate a to precision ε while minimizing cost.

- **9** Fast estimation: Estimate α to precision ε in $\approx 1.7/\varepsilon \checkmark$
- ② Non-destructive estimation: given exactly one input state $ec{\psi}$ 🗸
- Solution: Solution: Provide the state of the state o
- ${f 0}$ Unbiased estimation: output an estimate \hat{a} with $\mathbb{E}[\hat{a}]pprox a$

IBM Quantum

Goal: sample from a random variable \hat{a} such that:

 $\mathbb{E}[\hat{a}] \approx a$ and $\Pr[|\hat{a} - a| > \varepsilon] \leq \delta$

IBM Quantum

Goal: sample from a random variable \hat{a} such that:

$$\mathbb{E}[\hat{a}] \approx a$$
 and $\Pr[|\hat{a} - a| > \varepsilon] \le \delta$

Approach:

• Say $a \in [a_{\min}, a_{\max}]$ such that $a_{\max} - a_{\min} < \varepsilon$. Pick $\hat{a} = a_{\max}$ with probability

$$rac{a-a_{\min}}{a_{\max}-a_{\min}},$$

otherwise pick $\hat{a} = a_{\min}$. Then $\mathbb{E}[\hat{a}] = a$ and $|\hat{a} - a| < \varepsilon$.

Goal: sample from a random variable \hat{a} such that:

$$\mathbb{E}[\hat{a}] \approx a$$
 and $\Pr[|\hat{a} - a| > \varepsilon] \le \delta$

Approach:

• Say $a \in [a_{\min}, a_{\max}]$ such that $a_{\max} - a_{\min} < \varepsilon$. Pick $\hat{a} = a_{\max}$ with probability

$$\frac{a-a_{\min}}{a_{\max}-a_{\min}},$$

otherwise pick $\hat{a} = a_{\min}$. Then $\mathbb{E}[\hat{a}] = a$ and $|\hat{a} - a| < \varepsilon$.

• Construct a polynomial p(a) such that $p(a)^2 \approx \frac{a-a_{\min}}{a_{\max}-a_{\min}}$. Then $\mathbb{E}[\hat{a}] \approx a$.
Goal: sample from a random variable \hat{a} such that:

$$\mathbb{E}[\hat{a}] \approx a$$
 and $\Pr[|\hat{a} - a| > \varepsilon] \leq \delta$

Approach:

• Say $a \in [a_{\min}, a_{\max}]$ such that $a_{\max} - a_{\min} < \varepsilon$. Pick $\hat{a} = a_{\max}$ with probability

$$\frac{a-a_{\min}}{a_{\max}-a_{\min}}$$

otherwise pick $\hat{a} = a_{\min}$. Then $\mathbb{E}[\hat{a}] = a$ and $|\hat{a} - a| < \varepsilon$.

- Construct a polynomial p(a) such that $p(a)^2 \approx \frac{a-a_{\min}}{a_{\max}-a_{\min}}$. Then $\mathbb{E}[\hat{a}] \approx a$.
- Apply a recursive argument to the interval refinement algorithm: if all intermediate â satisfy E[â] ≈ a, then so does the algorithm as a whole.

Thank you for your attention!

Special thanks to:

Stefan Woerner, Julien Gacon, and Giacomo Nannicini John Martyn, Nikitas Stamatopoulos, and Pawel Wocjan

Contact us at patrickjrall@ibm.com, Bryce.Fuller@ibm.com