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Shuffling Stabilizer States

Bennink et al. Phys. Rev. A 95, 062337

A simple circuit:

Λ(|+〉〈+|) = ρ

= 0.3 |+〉〈+|+ 0.7 |−〉〈−|

Sample:

ρ̂ =

{
|+〉〈+| with prob. 0.3

|−〉〈−| with prob. 0.7

Tr (ρ̂σX) estimates Tr (ρσX)
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Shuffling Stabilizer States (cont.)

What if output is not a stabilizer
mixture, e.g. T |+〉〈+|T † = ρ′?

Can still write:

ρ′ =

√
2 + 2
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√
2− 2

4
√

2
|−i〉〈−i|

R(ρ′) =
∑
|φ〉

|q|φ〉| =
√

2

Sample:

ρ̂ =


R(ρ′) |+〉〈+| with prob. |q|+〉|/R(ρ′)

R(ρ′) |+i〉〈+i| with prob. |q|+i〉|/R(ρ′)

R(ρ′) |−〉〈−| with prob. |q|−〉|/R(ρ′)

R(ρ′) |−i〉〈−i| with prob. |q|−i〉|/R(ρ′)
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Runtime cost

Repeated iteration:

Upper bound on sample magnitude:

|sample| ≤ R(ρin) ·
∏
i

max|φ〉R
(

Λi(|φ〉〈φ|)
)
·max|φ〉Tr (|φ〉〈φ|E)

Hoeffding’s inequality gives runtime: Pr(error ≥ ε) ≤ δ if

samples needed ≥ 1

ε2
log

1

δ
· 4 max |sample|2

Calculating R is hard. See Markus Heinrich’s talk tomorrow!

Lower bound D (aka st-norm): Phys. Rev. Lett. 118, 090501

R(ρ) ≥ D(ρ) = 2−n
∑
σi

|Tr (σiρ)|
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Shuffling Paulis

Decompose input: |+〉〈+| = σX+σI
2

ρ̂ =

{
σX with prob. 1/2

σI with prob. 1/2

Decompose T ρ̂T † :

TσIT
† = σI ; TσXT

† =
σX + σY√

2

D(TσXT
†) =

1

2

∑
i

∣∣∣Tr
(
σiTσXT

†
)∣∣∣ =

2√
2

=
√

2

Sample:

ρ̂ =

{
D(TσXT

†)σX w.p. (1/
√

2)/D(TσXT
†)

D(TσXT
†)σY w.p. (1/

√
2)/D(TσXT

†)
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Outline for the rest of the talk

1 Properties of D and R

2 Hyper-Octahedral States

3 Discarding Qubits

4 Performance in Practice

5 A Cartoon

Patrick Rall Shuffling Paulis Aug 21, 2018 6 / 14



Properties of D and R

If ρ is a stabilizer state:

D(ρ) ≤ 1 R(ρ) = 1

Shuffling Paulis can efficiently simulate Clifford circuits without
ever writing down a stabilizer state.

For all ρ:
D(ρ) ≥ 2−n R(ρ) ≥ 1

Shuffling Paulis can be faster than shuffling stabilizer states:
Highly mixed states with D(ρ)� 1 improve runtime!
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Hyper-Octahedral States

Families of states:

Stabilizer mixtures:

R(ρ) = 1

Hyper-octahedral states:

D(ρ) ≤ 1

Magic states:

D(ρ) > 1,R(ρ) > 1

Observation: In multi-qubit systems there exist hyper-octahedral
states that are not stabilizer mixtures!

There are a lot of these. (Based on 100 000 random 2-Qubit states)

Previously known to exist for odd-dimensional systems
e.g. New J. Phys. 15 039502, doi:10.1038/nature13460
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Hyper-Octahedral States (contd.)

ρ(x, y) =
σII

4
+ xσZZ

+ y(σXX + σXY + σYX − σY Y )

ρ(x, y) =
σII + 0.8σZZ

4

+ x(σXX − σY Y ) + y(σXY + σYX)
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Discarding Qubits

Runtime ∼ O
(

max |sample|2
)

|sample| ≤ D(ρin) ·
∏
j

maxσiD
(

Λj(σi)
)
·maxσiTr (σiE)

Circuit with k discarded ancillas:

E = |0〉〈0| ⊗ σ⊗kI so maxσiTr (σiE) = 2k, which can be large!
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Discarding Qubits (contd.)

We can usually recover polynomial runtime in # of qubits.

Use back-propagation with Λ−1(E):

Tr (Λ(ρ)E) = Tr
(
ρΛ−1(E)

)
Λ−1(E) = 2−n

∑
σi

σiTr (Λ(σi)E)

Runtime:

|sample| ≤ D(E) ·
∏
j

maxσiD
(

Λ−1j (σi)
)
·maxσiTr (σiρin)
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Performance in Practice

Preliminary data on Texas Maverick supercomputer:
10 NVIDIA Tesla K40 GPUs take ≈ 40 billion samples in ≈ 30 min.

16 qubit supremacy circuits with depth →16, T count →40
Nothing impressive – I can definitely do larger cases.

Added depolarizing noise to each single-qubit gate. D = 1+f
2 ≤ 1

Analyzed distribution directly for better error bound.

Verified smaller cases using stabilizer-rank techniques.
Phys. Rev. Lett. 116, 250501, also see Dr. Earl Campbell’s talk tomorrow!

Question: Is there an algorithm that:

is fast for Clifford circuits,
supports noisy channels,
and gives multiplicative error?
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Performance in Practice (contd.)
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Estimating Probabilities of 16-Qubit Supremacy Circuits
Preliminary Data - 10 232 40 billion samples 

No Noise
Fidelity = 1 - 2 3

Fidelity = 1 - 2 5
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A Cartoon

Pure states ρ2 = ρ are on a hyper-sphere...
... but there aren’t enough to cover it!

D(ρ) ≤ 1 defines a hyper-octahedron.

Stab. states lie on (2n − 2)-faces...
... but only where ρ2 = ρ!

stabilizer polytope =

hyper-octahedron +
[
ρ2 = ρ

]
Special thanks to:

Dr. Scott Aaronson
Dr. James Troupe
Daniel Liang

Thank you for listening!
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