"Improved classical simulation of quantum circuits dominated by Clifford gates"

Presented by Patrick Rall

Publication by Sergey Bravyi and David Gosset on Jan 29, 2016

October 14, 2016

1 Introduction

Model of Computation Gottesmann-Knill Theorem Magic States

2 Algorithm

3 Appendix

1/20

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ めのの

Model of Computation

System: input qubits + ancilla qubits = n qubits

- Hilbert space: \mathbb{C}^{2n} exponentially large
- Intuition: Quantum computation efficiently calculates matrix multiplication $U|\Psi_{in}\rangle$

1 Introduction

Model of Computation Gottesmann-Knill Theorem Magic States

2 Algorithm

Model of Computation: Output Probabilities

- Simplification: assume input state $|0^{\otimes n}\rangle$
- Measure output qubit: some probability distribution
- Goal: sample from this distribution

$$egin{aligned} c_x &= \langle x | U ig| 0^{\otimes n}
ight
angle \ P_x &= |c_x|^2 = ig\langle 0^{\otimes n} ig| U^\dagger | x
angle \langle x | U ig| 0^{\otimes n}
ight
angle \end{aligned}$$

• Here $|x\rangle\langle x|$ is a projector onto an output state

1 Introduction

Model of Computation Gottesmann-Knill Theorem Magic States

2 Algorithm

3 Appendix

3/20

Classical simulation: naïve approach

• Given
$$U = U_m \dots U_3 U_2 U_1$$
, calculate P_x :

 $P_{x} = \left\langle 0^{\otimes n} \right| U_{1}^{\dagger} U_{2}^{\dagger} ... U_{m}^{\dagger} |x\rangle \langle x| U_{m} ... U_{2} U_{1} \left| 0^{\otimes n} \right\rangle$

- Calculate *m* matrix multiplications in C²ⁿ
- Naïve runtime: $m(2^n)^{\omega}$, best known¹ $\omega = 2.3737$

Interpretation

- Exponential in n: always intractable for large enough n
- Getting rid of exponentiality? Would imply:
 Quantum computing = Classical computing
- Algorithm 'moves' exponent in n to other parameter

1 Introduction

Model of Computation Gottesmann-Knill Theorem Magic States

2 Algorithm

Stabilizer States

- D. Gottesman (1998): "The Heisenberg Representation of Quantum Computers"²
- Consider an Abelian subgroup $G \subset \mathcal{P}_n$ with $-I \notin G$.
- Def: $|\phi\rangle$ is **stabilized** by *G* if $P|\phi\rangle = |\phi\rangle$, $\forall P \in G$.
- Def: $|\phi\rangle$ is a **stabilizer state** if stabilized by some *G*
- Clifford gates map stabilizer states to stabilizer states
- Example: $G = \langle X \otimes X, Z \otimes Z \rangle \subset \mathcal{P}_2$
- Unique stabilizer state:

$$|\phi
angle = rac{|00
angle + |11
angle}{\sqrt{2}}$$

 Degrees of freedom: G defined by k stabilizer generators stabilizes 2^{n-k} states.

²https://arxiv.org/abs/quant-ph/9807006v1 ↔ 🖉 ► ↔ 🗷 ► ↔ 🖳 🔊 ० ० ०

1 Introduction Model of Computation Gottesmann-Knill Theorem Magic States

2 Algorithm

3 Appendix

The Gottesmann-Knill Theorem

Stabilizer projector: project onto space stabilized by G

$$\Pi_G = \prod_{P \in G} \frac{1+P}{2}$$

- Clifford gates can act on stabilizer projectors: act on each generator of G
- Want to calculate:

$$P_{x} = \left\langle 0^{\otimes n} \right| U_{1}^{\dagger} U_{2}^{\dagger} ... U_{m}^{\dagger} | x \rangle \langle x | U_{m} ... U_{2} U_{1} \big| 0^{\otimes n} \rangle$$

• What if $U_i \in C_n$? Then, given $|x\rangle\langle x| = \Pi_x$:

$$P_{x} = \left\langle 0^{\otimes n} \right| U_{1}^{\dagger} U_{2}^{\dagger} ... \Pi_{G_{m}(x)} ... U_{2} U_{1} \left| 0^{\otimes n} \right\rangle$$

$$= \left\langle 0^{\otimes n} \right| U_1^{\dagger} \Pi_{G_2(x)} U_1 \big| 0^{\otimes n} \right\rangle = \left\langle 0^{\otimes n} \big| \Pi_{G(x)} \big| 0^{\otimes n} \right\rangle$$

Result: can calculate circuit in polynomial time!

1 Introduction

Model of Computation Gottesmann-Knill Theorem Magic States

2 Algorithm

3 Appendix

Clifford + T: A universal gate set

- Circuits composed of Cliffords, i.e. H, S, CNOT, can be simulated efficiently
- ► {*H*, *S*, *CNOT*} acting on stabilizer states only is not universal
 - Mathematical fact
 - Otherwise: quantum computing = classical computing
- Add the *T* gate to obtain universal gate set:

$$T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$$

- Problem: T gate hard to simulate classically
- Incidentally: T gate also hard to build in experiment

1 Introduction Model of Computation Gottesmann-Knill Theorem Magic States

2 Algorithm

Gadgetization with Magic States

Consider a 'magic state':

$$|A
angle=rac{1}{\sqrt{2}}(|0
angle+e^{i\pi/4}|1
angle)$$

• Use $|A\rangle$ as a resource to write T in terms of Cliffords:

- Measurement destroys magic state in the process.
- Input to circuit was $|0^{\otimes n}\rangle$, now is $|0^{\otimes n}A^{\otimes t}\rangle$.
- t = number of T gates in circuit

1 Introduction Model of Computation Gottesmann-Knill Theorem Magic States

2 Algorithm

3 Appendix

Converting the problem

The challenge

- Before: non-Clifford circuit with T gates
- After: non-stabilizer 'magic' resource state $|A^{\otimes t}\rangle$

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶

1 Introduction Model of Computation Gottesmann-Knil Theorem

Magic States

2 Algorithm

3 Appendix

Algorithm Goal

Goal: Sample from probability distribution

 $P_{X} = \left< 0^{\otimes n} \right| U^{\dagger} \Pi_{X} U \big| 0^{\otimes n} \right>$

 Gadgetize non-Clifford unitary U to Clifford V with 'magic' resource state |A^{⊗t}⟩

How to deal with measurement? Post-select measurement outcomes into string y. Calculate:

$$P_{x} = \frac{\langle A^{\otimes t} 0^{\otimes n} | V^{\dagger} (\Pi_{x} \otimes \Pi_{y}) V | 0^{\otimes n} A^{\otimes t} \rangle}{\langle A^{\otimes t} 0^{\otimes n} | V^{\dagger} (\mathbb{I} \otimes \Pi_{y}) V | 0^{\otimes n} A^{\otimes t} \rangle}$$

Works for any y!

1 Introduction

Model of Computation Gottesmann-Knill Theorem Magic States

2 Algorithm

3 Appendix

Concept: Stabilizer Rank χ

- Remaining problem: non-stabilizer state $|A^{\otimes t}\rangle$
- Write as a linear combination of χ stabilizer states $|\phi_a\rangle$

$$\left|A^{\otimes t}\right\rangle pprox \sum_{a}^{\chi} z_{a} |\phi_{a}
angle = |\Psi
angle$$

- ▶ 2^t stabilizer states: Naïve upper bound $\chi \leq 2^t$
- ► Clever trick 1: Recognize that |A^{⊗2}⟩ is a sum of two stabilizer states. Divide |A^{⊗t}⟩ into pairs: χ ≤ 2^{t/2}
- Clever trick 2 (see appendix): Achieve χ ~ O(2^{0.23t}). Authors conjecture that this is optimal.

1 Introduction Model of Computation Gottesmann-Knill Theorem Magic States

2 Algorithm

3 Appendix

11/20

Summary Calculation

$$P_{x} = \langle 0^{\otimes n} | U^{\dagger} \Pi_{x} U | 0^{\otimes n} \rangle$$

$$= \frac{\langle A^{\otimes t} 0^{\otimes n} | V^{\dagger} (\Pi_{x} \otimes \Pi_{y}) V | 0^{\otimes n} A^{\otimes t} \rangle}{\langle A^{\otimes t} 0^{\otimes n} | V^{\dagger} (\mathbb{I} \otimes \Pi_{y}) V | 0^{\otimes n} A^{\otimes t} \rangle}$$

$$= \frac{\langle A^{\otimes t} 0^{\otimes n} | \Pi_{G(x,y)} | 0^{\otimes n} A^{\otimes t} \rangle}{\langle A^{\otimes t} 0^{\otimes n} | \Pi_{H(y)} | 0^{\otimes n} A^{\otimes t} \rangle} = \frac{1}{2^{u}} \frac{\langle A^{\otimes t} | \Pi_{\bar{G}(x,y)} | A^{\otimes t} \rangle}{\langle \bar{A}^{\otimes t} 0^{\otimes n} | \Pi_{H(y)} | A^{\otimes t} \rangle}$$

$$= \frac{1}{2^{u}} \frac{|\Pi_{\bar{G}(x,y)} | A^{\otimes t} \rangle|^{2}}{|\Pi_{\bar{H}(y)} | A^{\otimes t} \rangle|^{2}} \approx \frac{1}{2^{u}} \frac{|\Pi_{\bar{G}(x,y)} | \Psi \rangle|^{2}}{|\Pi_{\bar{H}(y)} |\Psi \rangle|^{2}}$$

► Calculation boils down to $|\Pi_{\bar{G}(x,y)}|\Psi\rangle|^2$ and $|\Pi_{\bar{H}(y)}|\Psi\rangle|^2$

Approx. requires random y, rather than arbitrary y

12/20

1 Introduction

Theorem Magic States 2 Algorithm 3 Appendix

< ロ > < 固 > < 注 > < 注 > 注 の < @</p>

The Algorithm

1. Choose random y, evaluate projectors $\Pi_{\bar{G}(x,y)}$, $\Pi_{\bar{H}(y)}$

2. Compute
$$|A^{\otimes t}\rangle \approx \sum_{a}^{\chi} z_{a} |\phi_{a}\rangle = |\Psi\rangle$$

such that $|\langle A^{\otimes t} |\Psi \rangle|^{2} \ge 1 - \delta$,
where $|\phi_{a}\rangle$ are stabilizer states, $\chi = O(2^{0.23t}\delta^{-1})$

3. Evaluate inner products $\left|\Pi_{\bar{G}(x,y)}|\Psi\rangle\right|^2$ and $\left|\Pi_{\bar{H}(y)}|\Psi\rangle\right|^2$

$$|\Pi|\Psi\rangle|^{2} = \left|\Pi\sum_{a}^{\chi} z_{a}|\phi_{a}\rangle\right|^{2} = \left|\sum_{a}^{\chi} z_{a}\Pi|\phi_{a}\rangle\right|^{2}$$

4. Compute distribution $P_{x=0}$, $P_{x=1} = 1 - P_{x=0}$, and sample from distribution.

1 Introduction Model of Computation Gottesmann-Knill Theorem Magic States

2 Algorithm

3 Appendix

Runtime

Sample from output distribution for a string x:

$$poly(n, m) + 2^{0.23t} t^3 w^4$$

- Exponential: number of T gates t
- Polynomial: n qubits, width m circuit
- Length of output string |x| = w
- Projector Π_x has 2^w generators: w^4 via trick (appendix)
- Exponential part is highly parallelizable
 - Each term in $\sum_{a}^{\chi} z_a \Pi |\phi_a\rangle$ can be calculated independently

1 Introduction

Model of Computation Gottesmann-Knill Theorem Magic States

2 Algorithm

3 Appendix

Conclusions, next steps

Implementation

- MATLAB implementation by Bravyi, Gosset
 - Hidden shift algorithm on a laptop
 - 40 qubits, 50 T gates
- Python+C implementation by Iskren Vankov, me
- Upcoming: CUDA implementation?

New concept: Stabilizer Rank

- How to decompose arbitrary $|\Psi\rangle$ into stabilizer states?
- Improve naïve runtime $O(m2^n)$ to $O(m2^{\alpha n})$ for $\alpha < 1$?

1 Introduction

Model of Computation Gottesmann-Knill Theorem Magic States

2 Algorithm

3 Appendix

15/20

Appendix

- Alexei Kitaev's Stabilizer Toolkit
- Sampling larger bitstrings x
- Stabilizer decomposition of $|A^{\otimes t}\rangle$
- Computing inner products in $O(\chi)$ rather than $O(\chi^2)$

1 Introduction

Model of Computation Gottesmann-Knill Theorem Magic States

2 Algorithm

3 Appendix

16/20

< (四) < (四) > (\square) >

Alexei Kitaev's Stabilizer Toolkit

- Traditional representation: $G \subset \mathcal{P}_n$
- Efficient representation:³
 - Affine space \mathcal{K} : Subspace of \mathbb{F}^2 such that $\mathcal{L}(\mathcal{K}) = h \oplus \mathcal{K}$
 - ▶ Quadratic form *q*: Function $q : \mathcal{K} \to \mathbb{Z}_8$ with properties

$$|\mathcal{K}, q
angle = 2^{-k/2} \sum_{x \in \mathcal{K}} e^{rac{i\pi}{4}q(x)} |x
angle$$

Algorithms:

- Inner product of two states in $O(n^3)$
- Measure a Pauli operator in $O(n^2)$
- Sample random stabilizer states in O(n²) on average (O(n³) worst case)

17/20

1 Introduction

Model of Computation Gottesmann-Knill Theorem Magic States

2 Algorithm

Sampling larger bitstrings x

- Projector Π_x has 2^w generators. Contributes to |Π|Ψ⟩|².
- Achieve polynomial time: Sample first bit of x, x₁, then evaluate conditional probability for next bit, etc:

$$x = x_1 x_2 \dots x_w$$

$$P(x_2|x_1) = rac{P(x_1, x_2)}{P(x_1)} \ o \ P(x_3|x_1x_2) = rac{P(x_1, x_2, x_3)}{P(x_1, x_2)} \ \dots$$

(日) (四) (日) (日) (日)

• w^4 : not particularly fast, but at least not exponential

1 Introduction

Model of Computation Gottesmann-Knill Theorem Magic States

2 Algorithm

3 Appendix

Stabilizer decomposition of $|A^{\otimes t}\rangle$

$$\left|A^{\otimes t}\right\rangle \approx \sum_{a}^{\chi} z_{a} |\phi_{a}\rangle = |\Psi\rangle$$

 $\left|\langle A^{\otimes t} |\Psi
angle \right|^{2} \ge 1 - \delta$

• Low stabilizer rank decomposition $\chi = O(2^{0.23t}\delta^{-1})$

$$|A
angle = e^{i\pi/8}HS^{\dagger}\left(\cosrac{\pi}{8}|0
angle + \sinrac{\pi}{8}|1
angle
ight) = e^{i\pi/8}HS^{\dagger}|H
angle$$

- \blacktriangleright Find $|\mathcal{L}\rangle$ such that $|\langle H^{\otimes t}|\mathcal{L}\rangle|^2 \geq 1-\delta$
- ► Choose a dimension k such that $4 \ge 2^k v^{2t} \delta \ge 2$, $v = \cos \frac{\pi}{8}, |H\rangle = \frac{1}{2v} (|0\rangle + |+\rangle)$
- Sample a random subspace L ⊂ Fⁿ₂ with dimension k. From Markov's inequality:

$$\Pr\left[|\langle H^{\otimes t}|\mathcal{L}
angle|^2 \geq 1-\delta
ight] \geq \Omega(\delta)$$

▶ Keep sampling \mathcal{L} until this is true. Should take $O(\delta^{-1})$.

1 Introduction

Model of Computation Gottesmann-Knill Theorem Magic States

2 Algorithm

3 Appendix

Computing inner products in $O(\chi)$ rather than $O(\chi^2)$

- Given $\Pi |\Psi\rangle = \sum_{a}^{\chi} z_{a} \Pi |\phi_{a}\rangle$, compute $|\Pi |\Psi\rangle|^{2}$
- Naïve method: $O(\chi^2)$ calculations of $z_a z_b \langle \phi_a | \Pi | \phi_b \rangle$
- With clever trick: O(χ) calculations of z_a (θ_i|Π|φ_a) with L = 1/p_f ε random states |θ_i)

Random variable
$$\alpha = \frac{2^t}{L} \sum_{i=1}^{L} |\langle \theta_i | \Pi | \Psi \rangle|^2$$

$$\Pr\left[(1-\epsilon)|\Pi|\Psi
angle|^2 \le lpha \le (1+\epsilon)|\Pi|\Psi
angle|^2
ight] \ge 1-p_f$$

• Derivation uses that stabilizer states S are a 2-design

$$\sum_{ heta \in \mathcal{S}} (| heta
angle \langle heta| \otimes | heta
angle \langle heta|) = \int_{\mathsf{Haar}} (|\phi
angle \langle \phi| \otimes |\phi
angle \langle \phi|) d\phi$$

1 Introduction

Model of Computation Gottesmann-Knill Theorem Magic States

2 Algorithm

3 Appendix