“Improved classical simulation of quantum
circuits dominated by Clifford gates”

Presented by Patrick Rall

Publication by Sergey Bravyi and David Gosset on Jan 29, 2016

October 14, 2016

Model of Computation

Model of
Computation

Output { -
- | || Prep Input
Trash 7 Time Evolution: U 7 0)
——|0) Ancillas
(—— ——10)

» System: input qubits + ancilla qubits = n qubits
» Hilbert space: C?” - exponentially large

> Intuition: Quantum computation efficiently calculates
matrix multiplication U|W;,)

Model of Computation: Output Probabilities

Model of
Computation

v

Simplification: assume input state [0%")

v

Measure output qubit: some probability distribution

v

Goal: sample from this distribution

o = (x|U[0®")
Py = lexl? = (027 UT|x) (x| U|0=")

v

Here |x)(x| is a projector onto an output state

Classical simulation: naive approach

Model of
Computation

» Given U = U,...UsUs Uy, calculate Pi:
Py = (02" U UL...UL,) (x| Uppy... Un Uy [027

» Calculate m matrix multiplications in C?"

» Naive runtime: m(2")%, best known! w = 2.3737

Interpretation
» Exponential in n: always intractable for large enough n

> Getting rid of exponentiality? Would imply:
Quantum computing = Classical computing

> Algorithm ‘moves’ exponent in n to other parameter

1 Coppersmith-Winograd algorithm

Stabilizer States

g D. GOttesman (1998): “The Heisenberg Representation Gottesmann-Knill
of Quantum Computers’? oo

» Consider an Abelian subgroup G C P, with —/ & G.
» Def: |¢) is stabilized by G if P|¢) = |¢), VP € G.
» Def: |¢) is a stabilizer state if stabilized by some G

» Clifford gates map stabilizer states to stabilizer states

» Example: G = (X®X,Z®Z) C P>
» Unique stabilizer state:

_]00) + |11)
V2

> Degrees of freedom: G defined by k stabilizer
generators stabilizes 2" states.

|#)

2https:/ /arxiv.org/abs/quant-ph /9807006v1

The Gottesmann-Knill Theorem

v

Stabilizer projector: project onto space stabilized by G

Gottesmann-Knill
Theorem

PcG

v

Clifford gates can act on stabilizer projectors: act on
each generator of G

Want to calculate:

v

Py = (02" U] UL...UL,) (x| Upp... Un Uy [027

» What if U; € C,? Then, given |x)(x| = l:
Py = (02" UJ US...NG, (... U2 U [0°7)
= (0%"|UlN gy Ur]0%7) = (0% Mg |0°7)
» Result: can calculate circuit in polynomial time!

Clifford 4+ T: A universal gate set

Gottesmann-Knill
Theorem

» Circuits composed of Cliffords, i.e. H,S, CNOT, can be
simulated efficiently

» {H,S,CNOT} acting on stabilizer states only is not
universal

» Mathematical fact
» Otherwise: quantum computing = classical computing

» Add the T gate to obtain universal gate set:

1 0
T= |:0 ei7r/4:|

» Problem: T gate hard to simulate classically

» Incidentally: T gate also hard to build in experiment

Gadgetization with Magic States

» Consider a ‘magic state’: Magic States
14) = =(10) + ¢/4[1))
V2
» Use |A) as a resource to write T in terms of Cliffords:
7= S
A) —4
» Measurement destroys magic state in the process.
» Input to circuit was [09"), now is |[0®"A®t).

» t = number of T gates in circuit

Converting the problem

Magic States

Arbitrary U |0®m) | 0%

— I — Clifford V' —

Converted to — — | |A®H)

The challenge
» Before: non-Clifford circuit with T gates

» After: non-stabilizer ‘magic’ resource state |A®?)

Algorithm Goal
» Goal: Sample from probability distribution

P, = (0%"|UTNx U|0®™)

2 Algorithm

» Gadgetize non-Clifford unitary U to Clifford V with
‘magic’ resource state |A®?)

7= s
A) —4

» How to deal with measurement? Post-select
measurement outcomes into string y. Calculate:

p <A®t0®n| VT(HX ® ny)\/|0®nA®t>
O (ABt@n| V(I N,)V[02nASt)

» Works for any y!

Concept: Stabilizer Rank y

v

v

v

v

v

Remaining problem: non-stabilizer state |A®*) S

Write as a linear combination of x stabilizer states |¢,)
X
[A%) ~ D zalda) = W)
a

2t stabilizer states: Naive upper bound y < 2!
Clever trick 1: Recognize that }A®2> is a sum of two
stabilizer states. Divide |A®t) into pairs: y < 2t/2

Clever trick 2 (see appendix): Achieve y ~ O(20-23%).
Authors conjecture that this is optimal.

Summary Calculation

PX - <O®n‘ UTI_IXU|O®n> 2 Algorithm
(A®T0®n | VT(N, @ M,) V|0®"AE)
(A®t02n| VI(T® MN,)V|0Sn ADt)
(A0 Mg, [057A%) 1 (A% Mg,) A®Y)
<A®t0®n|ﬂH(y)|0®nA®t> Qu <A®t||‘|H(y)’A®t>

B i |I_IG(X,y)|A(X)t>|2 N i ‘né(x,y)|w>|2
24 Mgy |A®H 2 24 Mg, V)2

> Calculation boils down to Mg, \[W)[|* and Mg, |W)[?

> Approx. requires random y, rather than arbitrary y

The Algorithm

1. Choose random y, evaluate projectors I'I@(X,y), I'I,:,(y)
2. Compute |A®Y) ~ Y X z,|¢,) = |V)

such that [(A®HW)|2 > 1 -6,

where |¢,) are stabilizer states, y = 0(20-23t571)

2 Algorithm

2 2
3. Evaluate inner products ‘I’IG(X’},)W)‘ and ‘I'I,q(y)|lll)‘

njw)?

X 2
sza|¢a Zzanw)a)

4. Compute distribution Py—g, Px=1 = 1 — Px—g, and
sample from distribution.

Runtime

2 Algorithm

» Sample from output distribution for a string x:
poly(n, m) + 2033 "

» Exponential: number of T gates t
» Polynomial: n qubits, width m circuit
» Length of output string |x| = w

» Projector M, has 2" generators: w* via trick (appendix)
» Exponential part is highly parallelizable

» Each term in >"X z,M|¢,) can be calculated
independently

Conclusions, next steps

2 Algorithm

Implementation
» MATLAB implementation by Bravyi, Gosset

» Hidden shift algorithm on a laptop
» 40 qubits, 50 T gates

» Python+C implementation by Iskren Vankov, me
» Upcoming: CUDA implementation?
New concept: Stabilizer Rank
» How to decompose arbitrary |W) into stabilizer states?

» Improve naive runtime O(m2") to O(m2") for a < 17

v

v

v

v

Appendix

Alexei Kitaev's Stabilizer Toolkit
Sampling larger bitstrings x
Stabilizer decomposition of |A®?)

Computing inner products in O() rather than O(x?)

3 Appendix

Alexei Kitaev's Stabilizer Toolkit

» Traditional representation: G C P,

» Efficient representation:3

» Affine space K: Subspace of IF? such that £(K) = h& K
» Quadratic form g: Function g : K — Zg with properties

C,q) =272 3" eF0)x)

xeK

3 Appendix

» Algorithms:

> Inner product of two states in O(n3)

» Measure a Pauli operator in O(n?)

» Sample random stabilizer states in O(n?) on average
(O(n®) worst case)

3H. J. Garca and I. L. Markov, “Hybrid Techniques for Simulating
Quantum Circuits using the Heisenberg Representation”

Sampling larger bitstrings x

» Projector Iy has 2" generators. Contributes to ||W)

> Achieve polynomial time: Sample first bit of x, x1, then
evaluate conditional probability for next bit, etc:

X = X1X2...Xw

P(X13X2) P(X17X27X3)

— P(X3|X1X2) = P(Xl X2)

P(xe|x1) =

» w*: not particularly fast, but at least not exponential

2.

3 Appendix

Stabilizer decomposition of |A%?)
X

‘A®t> ~ Zza’¢a> = |V)

a

(A% W) > 16

3 Appendix

v

Low stabilizer rank decomposition y = 0(20-23t5~1)

|A) = e™/8HST (cos%|0> + sin %\1)) = ™8 HST|H)

v

Find |£) such that [(H®!L)]?2 >1 -6

Choose a dimension k such that 4 > 2kv2t§ > 2,
v=cosg,|H) =5, (10) + |+))

Sample a random subspace £ C 5 with dimension k.
From Markov's inequality:

v

v

Pri[(H®HL)? > 1 6] >Q(6)

» Keep sampling £ until this is true. Should take O(§71).

Computing inner products in O(x) rather than O(x?)

v

Given NV) = 3>"X z,M|¢,), compute [1|W)?
Naive method: O(x?) calculations of z,z,{¢,|M|dp)

With clever trick: O(x) calculations of z,(6;|M|¢,) LD
with L = 1/pre random states |6;)

v

v

L
) 2t
Random variable o = TZ: (6|1 W) 2

Pri(l—eMW)P <a < (1+e)NW)?] >1-pf

Derivation uses that stabilizer states S are a 2-design

v

> (1)@ 16)(01) = /H (Ip) (o @ |9)(o])de

0eS

	Introduction
	Model of Computation
	Gottesmann-Knill Theorem
	Magic States

	Algorithm
	Appendix

