
1 Introduction

Model of
Computation

Gottesmann-Knill
Theorem

Magic States

2 Algorithm

3 Appendix

1/20

“Improved classical simulation of quantum
circuits dominated by Clifford gates”

Presented by Patrick Rall

Publication by Sergey Bravyi and David Gosset on Jan 29, 2016

October 14, 2016

1 Introduction

Model of
Computation

Gottesmann-Knill
Theorem

Magic States

2 Algorithm

3 Appendix

2/20

Model of Computation

Output
{

Trash


Time Evolution: U

Prep

|0〉
|0〉
|0〉

moo oo

Input

Ancillas

I System: input qubits + ancilla qubits = n qubits

I Hilbert space: C2n - exponentially large

I Intuition: Quantum computation efficiently calculates
matrix multiplication U|Ψin〉

1 Introduction

Model of
Computation

Gottesmann-Knill
Theorem

Magic States

2 Algorithm

3 Appendix

3/20

Model of Computation: Output Probabilities

I Simplification: assume input state |0⊗n〉
I Measure output qubit: some probability distribution

I Goal: sample from this distribution

cx = 〈x |U
∣∣0⊗n〉

Px = |cx |2 =
〈
0⊗n
∣∣U†|x〉〈x |U∣∣0⊗n〉

I Here |x〉〈x | is a projector onto an output state

1 Introduction

Model of
Computation

Gottesmann-Knill
Theorem

Magic States

2 Algorithm

3 Appendix

4/20

Classical simulation: näıve approach

I Given U = Um...U3U2U1, calculate Px :

Px =
〈
0⊗n
∣∣U†1U†2 ...U†m|x〉〈x |Um...U2U1

∣∣0⊗n〉
I Calculate m matrix multiplications in C2n

I Näıve runtime: m(2n)ω, best known1 ω = 2.3737

Interpretation

I Exponential in n: always intractable for large enough n

I Getting rid of exponentiality? Would imply:
Quantum computing = Classical computing

I Algorithm ‘moves’ exponent in n to other parameter

1Coppersmith-Winograd algorithm

1 Introduction

Model of
Computation

Gottesmann-Knill
Theorem

Magic States

2 Algorithm

3 Appendix

5/20

Stabilizer States

I D. Gottesman (1998): “The Heisenberg Representation
of Quantum Computers”2

I Consider an Abelian subgroup G ⊂ Pn with −I 6∈ G .

I Def: |φ〉 is stabilized by G if P|φ〉 = |φ〉, ∀P ∈ G .

I Def: |φ〉 is a stabilizer state if stabilized by some G

I Clifford gates map stabilizer states to stabilizer states

I Example: G = 〈X ⊗ X ,Z ⊗ Z 〉 ⊂ P2

I Unique stabilizer state:

|φ〉 =
|00〉+ |11〉√

2

I Degrees of freedom: G defined by k stabilizer
generators stabilizes 2n−k states.

2https://arxiv.org/abs/quant-ph/9807006v1

1 Introduction

Model of
Computation

Gottesmann-Knill
Theorem

Magic States

2 Algorithm

3 Appendix

6/20

The Gottesmann-Knill Theorem

I Stabilizer projector: project onto space stabilized by G

ΠG =
∏
P∈G

1 + P

2

I Clifford gates can act on stabilizer projectors: act on
each generator of G

I Want to calculate:

Px =
〈
0⊗n
∣∣U†1U†2 ...U†m|x〉〈x |Um...U2U1

∣∣0⊗n〉
I What if Ui ∈ Cn? Then, given |x〉〈x | = Πx :

Px =
〈
0⊗n
∣∣U†1U†2 ...ΠGm(x)...U2U1

∣∣0⊗n〉
=
〈
0⊗n
∣∣U†1ΠG2(x)U1

∣∣0⊗n〉 =
〈
0⊗n
∣∣ΠG(x)

∣∣0⊗n〉
I Result: can calculate circuit in polynomial time!

1 Introduction

Model of
Computation

Gottesmann-Knill
Theorem

Magic States

2 Algorithm

3 Appendix

7/20

Clifford + T: A universal gate set

I Circuits composed of Cliffords, i.e. H,S ,CNOT , can be
simulated efficiently

I {H, S ,CNOT} acting on stabilizer states only is not
universal

I Mathematical fact
I Otherwise: quantum computing = classical computing

I Add the T gate to obtain universal gate set:

T =

[
1 0

0 e iπ/4

]
I Problem: T gate hard to simulate classically

I Incidentally: T gate also hard to build in experiment

1 Introduction

Model of
Computation

Gottesmann-Knill
Theorem

Magic States

2 Algorithm

3 Appendix

8/20

Gadgetization with Magic States

I Consider a ‘magic state’:

|A〉 =
1√
2

(|0〉+ e iπ/4|1〉)

I Use |A〉 as a resource to write T in terms of Cliffords:

T = • S

|A〉

I Measurement destroys magic state in the process.

I Input to circuit was |0⊗n〉, now is |0⊗nA⊗t〉.
I t = number of T gates in circuit

1 Introduction

Model of
Computation

Gottesmann-Knill
Theorem

Magic States

2 Algorithm

3 Appendix

9/20

Converting the problem

Arbitrary U |0⊗n〉

Clifford V

|0⊗n〉

|A⊗t〉Converted to →

The challenge

I Before: non-Clifford circuit with T gates

I After: non-stabilizer ‘magic’ resource state |A⊗t〉

1 Introduction

Model of
Computation

Gottesmann-Knill
Theorem

Magic States

2 Algorithm

3 Appendix

10/20

Algorithm Goal

I Goal: Sample from probability distribution

Px =
〈
0⊗n
∣∣U†ΠXU

∣∣0⊗n〉
I Gadgetize non-Clifford unitary U to Clifford V with

‘magic’ resource state |A⊗t〉

T = • S

|A〉

I How to deal with measurement? Post-select
measurement outcomes into string y . Calculate:

Px =
〈A⊗t0⊗n|V †(Πx ⊗ Πy)V |0⊗nA⊗t〉
〈A⊗t0⊗n|V †(I⊗ Πy)V |0⊗nA⊗t〉

I Works for any y !

1 Introduction

Model of
Computation

Gottesmann-Knill
Theorem

Magic States

2 Algorithm

3 Appendix

11/20

Concept: Stabilizer Rank χ

I Remaining problem: non-stabilizer state |A⊗t〉
I Write as a linear combination of χ stabilizer states |φa〉

∣∣A⊗t〉 ≈ χ∑
a

za|φa〉 = |Ψ〉

I 2t stabilizer states: Näıve upper bound χ ≤ 2t

I Clever trick 1: Recognize that
∣∣A⊗2

〉
is a sum of two

stabilizer states. Divide |A⊗t〉 into pairs: χ ≤ 2t/2

I Clever trick 2 (see appendix): Achieve χ ∼ O(20.23t).
Authors conjecture that this is optimal.

1 Introduction

Model of
Computation

Gottesmann-Knill
Theorem

Magic States

2 Algorithm

3 Appendix

12/20

Summary Calculation

Px =
〈
0⊗n
∣∣U†ΠxU

∣∣0⊗n〉
=
〈A⊗t0⊗n|V †(Πx ⊗ Πy)V |0⊗nA⊗t〉
〈A⊗t0⊗n|V †(I⊗ Πy)V |0⊗nA⊗t〉

=
〈A⊗t0⊗n|ΠG(x ,y)|0⊗nA⊗t〉
〈A⊗t0⊗n|ΠH(y)|0⊗nA⊗t〉

=
1

2u
〈A⊗t |ΠḠ(x ,y)|A⊗t〉〈
Ā⊗t

∣∣ΠH(y)|A⊗t〉

=
1

2u
|ΠḠ(x ,y)|A⊗t〉|2

|ΠH̄(y)|A⊗t〉|2
≈ 1

2u
|ΠḠ(x ,y)|Ψ〉|2

|ΠH̄(y)|Ψ〉|2

I Calculation boils down to |ΠḠ(x ,y)|Ψ〉|2 and |ΠH̄(y)|Ψ〉|2

I Approx. requires random y , rather than arbitrary y

1 Introduction

Model of
Computation

Gottesmann-Knill
Theorem

Magic States

2 Algorithm

3 Appendix

13/20

The Algorithm

1. Choose random y , evaluate projectors ΠḠ(x ,y), ΠH̄(y)

2. Compute |A⊗t〉 ≈
∑χ

a za|φa〉 = |Ψ〉
such that |〈A⊗t |Ψ〉|2 ≥ 1− δ,
where |φa〉 are stabilizer states, χ = O(20.23tδ−1)

3. Evaluate inner products
∣∣∣ΠḠ(x ,y)|Ψ〉

∣∣∣2 and
∣∣∣ΠH̄(y)|Ψ〉

∣∣∣2
|Π|Ψ〉|2 =

∣∣∣∣∣Π
χ∑
a

za|φa〉

∣∣∣∣∣
2

=

∣∣∣∣∣
χ∑
a

zaΠ|φa〉

∣∣∣∣∣
2

4. Compute distribution Px=0,Px=1 = 1− Px=0, and
sample from distribution.

1 Introduction

Model of
Computation

Gottesmann-Knill
Theorem

Magic States

2 Algorithm

3 Appendix

14/20

Runtime

I Sample from output distribution for a string x :

poly(n,m) + 20.23tt3w4

I Exponential: number of T gates t
I Polynomial: n qubits, width m circuit
I Length of output string |x | = w

I Projector Πx has 2w generators: w4 via trick (appendix)
I Exponential part is highly parallelizable

I Each term in
∑χ

a zaΠ|φa〉 can be calculated
independently

1 Introduction

Model of
Computation

Gottesmann-Knill
Theorem

Magic States

2 Algorithm

3 Appendix

15/20

Conclusions, next steps

Implementation
I MATLAB implementation by Bravyi, Gosset

I Hidden shift algorithm on a laptop
I 40 qubits, 50 T gates

I Python+C implementation by Iskren Vankov, me

I Upcoming: CUDA implementation?

New concept: Stabilizer Rank

I How to decompose arbitrary |Ψ〉 into stabilizer states?

I Improve näıve runtime O(m2n) to O(m2αn) for α < 1?

1 Introduction

Model of
Computation

Gottesmann-Knill
Theorem

Magic States

2 Algorithm

3 Appendix

16/20

Appendix

I Alexei Kitaev’s Stabilizer Toolkit

I Sampling larger bitstrings x

I Stabilizer decomposition of |A⊗t〉
I Computing inner products in O(χ) rather than O(χ2)

1 Introduction

Model of
Computation

Gottesmann-Knill
Theorem

Magic States

2 Algorithm

3 Appendix

17/20

Alexei Kitaev’s Stabilizer Toolkit

I Traditional representation: G ⊂ Pn
I Efficient representation:3

I Affine space K: Subspace of F2 such that L(K) = h⊕K
I Quadratic form q: Function q : K → Z8 with properties

|K, q〉 = 2−k/2
∑
x∈K

e
iπ
4 q(x)|x〉

I Algorithms:
I Inner product of two states in O(n3)
I Measure a Pauli operator in O(n2)
I Sample random stabilizer states in O(n2) on average

(O(n3) worst case)

3H. J. Garca and I. L. Markov, “Hybrid Techniques for Simulating
Quantum Circuits using the Heisenberg Representation”

1 Introduction

Model of
Computation

Gottesmann-Knill
Theorem

Magic States

2 Algorithm

3 Appendix

18/20

Sampling larger bitstrings x

I Projector Πx has 2w generators. Contributes to |Π|Ψ〉|2.

I Achieve polynomial time: Sample first bit of x , x1, then
evaluate conditional probability for next bit, etc:

x = x1x2...xw

P(x2|x1) =
P(x1, x2)

P(x1)
→ P(x3|x1x2) =

P(x1, x2, x3)

P(x1, x2)
...

I w4: not particularly fast, but at least not exponential

1 Introduction

Model of
Computation

Gottesmann-Knill
Theorem

Magic States

2 Algorithm

3 Appendix

19/20

Stabilizer decomposition of |A⊗t〉∣∣A⊗t〉 ≈ χ∑
a

za|φa〉 = |Ψ〉

|〈A⊗t |Ψ〉|2 ≥ 1− δ

I Low stabilizer rank decomposition χ = O(20.23tδ−1)

|A〉 = e iπ/8HS†
(

cos
π

8
|0〉+ sin

π

8
|1〉
)

= e iπ/8HS†|H〉

I Find |L〉 such that |〈H⊗t |L〉|2 ≥ 1− δ
I Choose a dimension k such that 4 ≥ 2kv2tδ ≥ 2,

v = cos π8 , |H〉 = 1
2v (|0〉+ |+〉)

I Sample a random subspace L ⊂ Fn
2 with dimension k .

From Markov’s inequality:

Pr
[
|〈H⊗t |L〉|2 ≥ 1− δ

]
≥ Ω(δ)

I Keep sampling L until this is true. Should take O(δ−1).

1 Introduction

Model of
Computation

Gottesmann-Knill
Theorem

Magic States

2 Algorithm

3 Appendix

20/20

Computing inner products in O(χ) rather than O(χ2)

I Given Π|Ψ〉 =
∑χ

a zaΠ|φa〉, compute |Π|Ψ〉|2

I Näıve method: O(χ2) calculations of zazb〈φa|Π|φb〉
I With clever trick: O(χ) calculations of za〈θi |Π|φa〉

with L = 1/pf ε random states |θi 〉

Random variable α =
2t

L

L∑
i=1

|〈θi |Π|Ψ〉|2

Pr
[
(1− ε)|Π|Ψ〉|2 ≤ α ≤ (1 + ε)|Π|Ψ〉|2

]
≥ 1− pf

I Derivation uses that stabilizer states S are a 2-design∑
θ∈S

(|θ〉〈θ| ⊗ |θ〉〈θ|) =

∫
Haar

(|φ〉〈φ| ⊗ |φ〉〈φ|)dφ

	Introduction
	Model of Computation
	Gottesmann-Knill Theorem
	Magic States

	Algorithm
	Appendix

