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Model of Computation
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» System: input qubits + ancilla qubits = n qubits
» Hilbert space: C?” - exponentially large

> Intuition: Quantum computation efficiently calculates
matrix multiplication U|W;,)




Model of Computation: Output Probabilities

Model of
Computation
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Simplification: assume input state [0%")

v

Measure output qubit: some probability distribution

v

Goal: sample from this distribution

o = (x|U[0®")
Py = lexl? = (027 UT|x) (x| U|0=")

v

Here |x)(x| is a projector onto an output state




Classical simulation: naive approach

Model of
Computation

» Given U = U,...UsUs Uy, calculate Pi:
Py = (02" U UL...UL, ) (x| Uppy... Un Uy [ 027

» Calculate m matrix multiplications in C?"

» Naive runtime: m(2")%, best known! w = 2.3737

Interpretation
» Exponential in n: always intractable for large enough n

> Getting rid of exponentiality? Would imply:
Quantum computing = Classical computing

> Algorithm ‘moves’ exponent in n to other parameter

1 Coppersmith-Winograd algorithm



Stabilizer States

g D. GOttesman (1998): “The Heisenberg Representation Gottesmann-Knill
of Quantum Computers’? oo

» Consider an Abelian subgroup G C P, with —/ & G.
» Def: |¢) is stabilized by G if P|¢) = |¢), VP € G.
» Def: |¢) is a stabilizer state if stabilized by some G

» Clifford gates map stabilizer states to stabilizer states

» Example: G = (X®X,Z®Z) C P>
» Unique stabilizer state:

_]00) + |11)
V2

> Degrees of freedom: G defined by k stabilizer
generators stabilizes 2" states.

|#)

2https:/ /arxiv.org/abs/quant-ph /9807006v1



The Gottesmann-Knill Theorem
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Stabilizer projector: project onto space stabilized by G

Gottesmann-Knill
Theorem

PcG

v

Clifford gates can act on stabilizer projectors: act on
each generator of G

Want to calculate:

v

Py = (02" U] UL...UL, ) (x| Upp... Un Uy [ 027

» What if U; € C,? Then, given |x)(x| = l:
Py = (02" UJ US...NG, (... U2 U [ 0°7)
= (0%"|UlN gy Ur]0%7) = (0% Mg |0°7)
» Result: can calculate circuit in polynomial time!




Clifford 4+ T: A universal gate set

Gottesmann-Knill
Theorem

» Circuits composed of Cliffords, i.e. H,S, CNOT, can be
simulated efficiently

» {H,S,CNOT} acting on stabilizer states only is not
universal

» Mathematical fact
» Otherwise: quantum computing = classical computing

» Add the T gate to obtain universal gate set:

1 0
T= |:0 ei7r/4:|

» Problem: T gate hard to simulate classically

» Incidentally: T gate also hard to build in experiment




Gadgetization with Magic States

» Consider a ‘magic state’: Magic States
14) = =(10) + ¢/4[1))
V2
» Use |A) as a resource to write T in terms of Cliffords:
7= S
A) —4
» Measurement destroys magic state in the process.
» Input to circuit was [09"), now is |[0®"A®t).

» t = number of T gates in circuit




Converting the problem

Magic States

Arbitrary U |0®m) | 0%

— I — Clifford V' —

Converted to — — | |A®H)

The challenge
» Before: non-Clifford circuit with T gates

» After: non-stabilizer ‘magic’ resource state |A®?)




Algorithm Goal
» Goal: Sample from probability distribution

P, = (0%"|UTNx U|0®™)

2 Algorithm

» Gadgetize non-Clifford unitary U to Clifford V with
‘magic’ resource state |A®?)

7= s
A) —4

» How to deal with measurement? Post-select
measurement outcomes into string y. Calculate:

p <A®t0®n| VT(HX ® ny)\/|0®nA®t>
O (ABt@n| V(I N,)V[02nASt)

» Works for any y!




Concept: Stabilizer Rank y

v

v

v

v

v

Remaining problem: non-stabilizer state |A®*) S

Write as a linear combination of x stabilizer states |¢,)
X
[A%) ~ D zalda) = W)
a

2t stabilizer states: Naive upper bound y < 2!
Clever trick 1: Recognize that }A®2> is a sum of two
stabilizer states. Divide |A®t) into pairs: y < 2t/2

Clever trick 2 (see appendix): Achieve y ~ O(20-23%).
Authors conjecture that this is optimal.




Summary Calculation

PX - <O®n‘ UTI_IXU|O®n> 2 Algorithm
(A®T0®n | VT(N, @ M,) V|0®"AE)
(A®t02n| VI(T® MN,)V|0Sn ADt)
(A0 Mg, [057A%) 1 (A% Mg, ) A®Y)
<A®t0®n|ﬂH(y)|0®nA®t> Qu <A®t||‘|H(y)’A®t>

B i |I_IG(X,y)|A(X)t>|2 N i ‘né(x,y)|w>|2
24 Mgy |A®H 2 24 Mg, V)2

> Calculation boils down to Mg, \[W)[|* and Mg, |W)[?

> Approx. requires random y, rather than arbitrary y




The Algorithm

1. Choose random y, evaluate projectors I'I@(X,y), I'I,:,(y)
2. Compute |A®Y) ~ Y X z,|¢,) = |V)

such that [(A®HW)|2 > 1 -6,

where |¢,) are stabilizer states, y = 0(20-23t571)

2 Algorithm

2 2
3. Evaluate inner products ‘I’IG(X’},)W)‘ and ‘I'I,q(y)|lll)‘

njw)?

X 2
sza|¢a Zzanw)a)

4. Compute distribution Py—g, Px=1 = 1 — Px—g, and
sample from distribution.




Runtime

2 Algorithm

» Sample from output distribution for a string x:
poly(n, m) + 2033 "

» Exponential: number of T gates t
» Polynomial: n qubits, width m circuit
» Length of output string |x| = w

» Projector M, has 2" generators: w* via trick (appendix)
» Exponential part is highly parallelizable

» Each term in >"X z,M|¢,) can be calculated
independently




Conclusions, next steps

2 Algorithm

Implementation
» MATLAB implementation by Bravyi, Gosset

» Hidden shift algorithm on a laptop
» 40 qubits, 50 T gates

» Python+C implementation by Iskren Vankov, me
» Upcoming: CUDA implementation?
New concept: Stabilizer Rank
» How to decompose arbitrary |W) into stabilizer states?

» Improve naive runtime O(m2") to O(m2") for a < 17
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Appendix

Alexei Kitaev's Stabilizer Toolkit
Sampling larger bitstrings x
Stabilizer decomposition of |A®?)

Computing inner products in O() rather than O(x?)

3 Appendix




Alexei Kitaev's Stabilizer Toolkit

» Traditional representation: G C P,

» Efficient representation:3

» Affine space K: Subspace of IF? such that £(K) = h& K
» Quadratic form g: Function g : K — Zg with properties

C,q) =272 3" eF0)x)

xeK

3 Appendix

» Algorithms:

> Inner product of two states in O(n3)

» Measure a Pauli operator in O(n?)

» Sample random stabilizer states in O(n?) on average
(O(n®) worst case)

3H. J. Garca and I. L. Markov, “Hybrid Techniques for Simulating
Quantum Circuits using the Heisenberg Representation”




Sampling larger bitstrings x

» Projector Iy has 2" generators. Contributes to ||W)

> Achieve polynomial time: Sample first bit of x, x1, then
evaluate conditional probability for next bit, etc:

X = X1X2...Xw

P(X13X2) P(X17X27X3)

— P(X3|X1X2) = P(Xl X2)

P(xe|x1) =

» w*: not particularly fast, but at least not exponential

2.

3 Appendix




Stabilizer decomposition of |A%?)
X

‘A®t> ~ Zza’¢a> = |V)

a

(A% W) > 16

3 Appendix

v

Low stabilizer rank decomposition y = 0(20-23t5~1)

|A) = e™/8HST (cos%|0> + sin %\1)) = ™8 HST|H)

v

Find |£) such that [(H®!L)]?2 >1 -6

Choose a dimension k such that 4 > 2kv2t§ > 2,
v=cosg,|H) =5, (10) + |+))

Sample a random subspace £ C 5 with dimension k.
From Markov's inequality:

v

v

Pri[(H®HL)? > 1 6] >Q(6)

» Keep sampling £ until this is true. Should take O(§71).



Computing inner products in O(x) rather than O(x?)

v

Given NV) = 3>"X z,M|¢,), compute [1|W)?
Naive method: O(x?) calculations of z,z,{¢,|M|dp)

With clever trick: O(x) calculations of z,(6;|M|¢,) LD
with L = 1/pre random states |6;)

v

v

L
) 2t
Random variable o = TZ: (6|1 W) 2

Pri(l—eMW)P <a < (1+e)NW)?] >1-pf

Derivation uses that stabilizer states S are a 2-design

v

> (1)@ 16)(01) = /H (Ip) (o @ |9)(o])de

0eS
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