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Why postselection as a primitive?

Postselection captures common operations
Estimate probability of postselection success

Classical: To get precision ε, need O(1/ε2) samples
Quantum: Amplitude estimation has circuit size O(1/ε)

Condition experiment on postselection success

Classical: If success probability is p, to try O(1/p) times
Quantum: Amplitude amplification has circuit size O(1/

√
p)

Quadratic speedups for both of these common operations.
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Example: Expectation of Pauli Matrix

Some state |ψ〉 and Pauli matrix P. Estimate 〈ψ|P |ψ〉
Let U |0n〉 = |ψ〉.

Standard method: Let VPV † = I ⊗ σZ ⊗ σZ ⊗ I

|0〉n U V †

Alternate method: exploit that P is unitary

|0〉n U P U† |0〉

Postselection probability: |〈ψ|P |ψ〉|2. Almost what we want.
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Example: Expectation of Pauli Matrix

Smallest eigenvalue of P is −1, so:∣∣∣∣〈ψ| I + P

2
|ψ〉
∣∣∣∣ = 〈ψ| I + P

2
|ψ〉 =

〈ψ|P |ψ〉+ 1

2

If only we could multiply by I+P
2 rather than P...

|+〉 • |+〉

|0〉n U P U† |0〉

Observe that (〈+| ⊗ I )CTRL-P(|+〉 ⊗ I ) = I+P
2

Patrick Rall Algorithms from Block Encodings May 2020 5 / 22



Example: Expectation of Pauli Matrix

Smallest eigenvalue of P is −1, so:∣∣∣∣〈ψ| I + P

2
|ψ〉
∣∣∣∣ = 〈ψ| I + P

2
|ψ〉 =

〈ψ|P |ψ〉+ 1

2

If only we could multiply by I+P
2 rather than P...

|+〉 • |+〉

|0〉n U P U† |0〉

Observe that (〈+| ⊗ I )CTRL-P(|+〉 ⊗ I ) = I+P
2

Patrick Rall Algorithms from Block Encodings May 2020 5 / 22



Example: Expectation of Pauli Matrix

Smallest eigenvalue of P is −1, so:∣∣∣∣〈ψ| I + P

2
|ψ〉
∣∣∣∣ = 〈ψ| I + P

2
|ψ〉 =

〈ψ|P |ψ〉+ 1

2

If only we could multiply by I+P
2 rather than P...

|+〉 • |+〉

|0〉n U P U† |0〉

Observe that (〈+| ⊗ I )CTRL-P(|+〉 ⊗ I ) = I+P
2

Patrick Rall Algorithms from Block Encodings May 2020 5 / 22



Example: Expectation of Pauli Matrix

Smallest eigenvalue of P is −1, so:∣∣∣∣〈ψ| I + P

2
|ψ〉
∣∣∣∣ = 〈ψ| I + P

2
|ψ〉 =

〈ψ|P |ψ〉+ 1

2

If only we could multiply by I+P
2 rather than P...

|+〉 • |+〉

|0〉n U P U† |0〉

Observe that (〈+| ⊗ I )CTRL-P(|+〉 ⊗ I ) = I+P
2

Patrick Rall Algorithms from Block Encodings May 2020 5 / 22



Probabilistic mixtures of unitaries

|ψ〉 → A |ψ〉 where A =
∑
i

piUi

∑
i

√
pi |i〉 •

∑
i

√
pi |i〉

|ψ〉 Ui

SELECT(U) =
∑
i

|i〉 〈i | ⊗ Ui

Can ‘perform’ non-unitary operations!
Berry, Childs, Kothari, Somma - arXiv:1501.01715, arXiv:1511.02306
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Block-encodings

Even more general form of circuit:

|0〉
U

|0〉

|ψ〉

U is a block-encoding of A if:

A = (〈0| ⊗ I )U(|0〉 ⊗ I ) or U =

[
A ·
· ·

]

Limitation: spectral norm of A at is most 1. Add notion of scale:

U is an α-scaled block-encoding of A if:

A/α = (〈0| ⊗ I )U(|0〉 ⊗ I ) or U =

[
A/α ·
· ·

]
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New primitives

If you have an α-scaled block-encoding of A, you can:

|ψ〉 → A |ψ〉

|ψ〉 → A |ψ〉
|A |ψ〉|

with O

(
1

|A |ψ〉|

)

estimate |A |ψ〉| with O
(α
ε

)
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Building block-encodings

Unitary matrices are ‘trivial’ block-encodings of themselves
→ Pauli matrices!

Linear combinations:

A =
∑

i αiUi gives
∑

i |αi |-scaled block-encoding

Multiplication AB and tensor products A⊗ B

Sparsity: Block-encoding from ‘sparse-access’ oracles

In practice, efficient block encodings exist for:

Any observable you might care about
Any hamiltonian you might care about
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Hamiltonian simulation via polynomials

Given: α-scaled block-encoding of hamiltonian H

Goal: build block-encoding of e iHt = cos(Ht) + i sin(Ht)
Approximate cos(Ht) and sin(Ht) via polynomials of H

Jacobi-Anger expansion → polynomial in H/α

sin(tH) = sin(tα(H/α)) =
∞∑
k=0

2(−1)kJ2k+1(αt)T2k+1(H/α)

Jm(x) is modified Bessel function of the first kind.
Tm(x) is m’th Chebyshev polynomial.

Truncate ∞ at K . Can make (H/α)k via multiplication, and build
polynomial via linear combination.
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Hamiltonian simulation via polynomials

Building polynomials via multiplication and linear combination

Complicated circuit. Requires O(log(degree)) additional ancillas.
Scale factor is O(K 2) - still pretty large

Can do much much better:

Quantum singular value transformation / qubitization

Low, Chuang - arXiv:1606.02685, 1610.06536, arXiv:1707.05391
Gilyén, Su, Low, Wiebe - arXiv:1806.01838

|0〉
U

e iθ1|0〉〈0|

U†
e iθ2|0〉〈0|

U . . .
|0〉

Only O(1) additional ancilla, resulting block-encoding is O(1)-scaled.

Polynomial coefficients are encoded into θ1, θ2, ...
See arXiv:2003.02831.
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Halfway-point - Summary

|0〉
U

|0〉
U =

[
A/α ·
· ·

]

Block-encodings can express any matrix

New primitive operations:

|ψ〉 → A |ψ〉 |ψ〉 → A |ψ〉
|A |ψ〉|

estimate |A |ψ〉|

Construct e.g. via linear combinations of Pauli matrices

Singular value transformation: given H construct poly(H)

Yields Hamiltonian simulation algorithm with complexity O(α|t|)
→ better than naive Trotter!

Good reference: Gilyén, Su, Low, Wiebe - arXiv:1806.01838
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Preparing ground states via e.g., Lin, Tong - arXiv:2002.12508.

Say we have a Hamiltonian H with:

Spectral gap ∆
Known ground-state energy E0

Non-degenerate ground space

Construct polynomial approximation of Heaviside step function:

p(x) ≈ 1−Θ(x − E0 −∆/2) =

{
0 if x ≥ E0 + ∆/2
1 if x < E0 + ∆/2

Example construction: Chebyshev expansion of erf(kx) ≈ Θ(x)
To be accurate within ±∆/2 need degree O(1/∆), (arXiv:1707.05391)

Then p(H) ≈ |ψ0〉 〈ψ0|
Algorithm based on a trial state |φ〉 with cost 1/ 〈φ|ψ0〉:

|φ〉 → p(H) |φ〉
|p(H) |φ〉 |

≈ |ψ0〉
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Preparing thermal states via Chowdhury, Somma - arXiv:1603.02940

Goal: Prepare ρβ = e−βH/Z where Z = Tr(e−βH)

Hubbard-Stratonovich transformation:

e−βH/2 =

√
1

2π

∫ ∞
−∞

dy · e−y2/2e−iy
√
βH

Chain of polynomial approximations:

βH →
√
βH → e iy

√
βH → e−βH/2

Multiply maximally mixed state I/D:

I

D
→

e−βH/2 I
D e−βH/2

Tr
(
e−βH/2 I

D e−βH/2
) =

e−βH/D

Z/D
=

e−βH

Z

Complexity: O(
√
β · D/Z)
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Expectations of mixed states (this work)

How to get quadratic speed-up for estimation of Tr(ρO)?

Say |ψ〉 is a purification of ρ: ρ = TrP(|ψ〉 〈ψ|)
Say U prepares |ψ〉. Then:

|0n〉
U

O
U†

|0n〉

|0k〉 |0k〉

→ |〈ψ| (O ⊗ I ) |ψ〉| = |Tr(|ψ〉 〈ψ|O)| = |Tr(ρO)|
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n-time correlation functions (this work)

Observable in Heisenberg picture:

Oi (ti ) = e iHtiOie
−iHti

To estimate 〈O1(t1)O2(t2)...On(tn)〉, construct block encoding:

Γ =
∏
i

Oi (ti ) = e iHt1O1e
iH(t2−t1)O2e

iH(t3−t2)...One
iHtn

Γ is not hermitian, so expectation is complex.

Real part: Tr

(
ρ

Γ + Γ†

2

)
Imaginary part: Tr

(
ρ

Γ− Γ†

2i

)
Improves over Pedernales et al. arXiv:1401.2430
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Density of states (this work)

Say H has eigenvalues Ei .

ρ(E ) =
1

D

∑
i

δ(Ei − E )

Problems with evaluating ρ(E ):

Has non-smooth ‘spikey’ shape at high resolutions
#P-complete to compute exactly

Usually interested in histograms or ‘sketches’ of ρ(E )
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Density of states (this work)

Histogram bin:
∫ Eb

Ea
ρ(E )dE

w(x) ≈ rectEa,Eb
(x) =

{ 0 if x < Ea

1 if Ea ≤ x ≤ Eb

0 if Eb < x

Construct e.g., by adding two erf(x) approximations, or using
Jackson’s theorem and amplifying polynomials.
Then Tr

(
I
Dw(H)

)
estimates bin value.

Roggero - arXiv:2004.04889 - Point estimates

ρ(E ) = Tr
(
I
D δ(H − E )

)
≈ Tr

(
I
D e(H−E)2/∆

)
≈ Tr

(
I
D poly(H)

)
Both improve upon phase-estimation method.
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Kernel Polynomial Method (this work)

Method for sketching ρ(E ): Chebyshev decomposition

µn =

∫ 1

−1
Tn(E )ρ(E )dE

ρ(E ) ≈ 1

π
√

1− E 2

(
g0µ0 + 2

N∑
n=0

µngnTn(E )

)

Scale H so that energies fall into [−1, 1]. gn are independent of ρ.
See arXiv:0504627.

Quantum singular value transformation makes Tn(H) very easy:

|0〉
U

e iπ|0〉〈0|

U†
e iπ|0〉〈0|

U . . .
|0〉
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Other quantities (this work)

Similar strategies work for:

Local density of states.

|ψ(~r)〉 is wavefunction of particle at ~r
|ψi 〉 are eigenstates of H

ρ~r (E ) =
∑
i

δ(Ei − E ) |〈ψ(~r)|ψi 〉|2

Correlation functions in linear response theory:

Some observables B,C .

A(E ) = 〈Bδ(H − E − E0)C 〉
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Thank you for your attention!

Special thanks to: Scott Aaronson, Andras Gilyén,
Andrew Potter, Justin Thaler, Chunhao Wang,

Alexander Weisse and Alexandro Roggero
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Oblivious amplitude amplification

Primitive operation:

|ψ〉 → A |ψ〉
|A |ψ〉 |

Requires O
(

1
|A|ψ〉|

)
applications of both A and preparations of |ψ〉

What if |ψ〉 is very expensive to prepare?

Oblivious amplitude amplification arXiv:1312.1414

If A is (approximately) unitary, need exactly one copy of |ψ〉
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