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Why postselection as a primitive?

@ Postselection captures common operations
o Estimate probability of postselection success

o Classical: To get precision ¢, need O(1/£?) samples
@ Quantum: Amplitude estimation has circuit size O(1/¢)

o Condition experiment on postselection success

o Classical: If success probability is p, to try O(1/p) times
o Quantum: Amplitude amplification has circuit size O(1/,/p)

@ Quadratic speedups for both of these common operations.
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Example: Expectation of Pauli Matrix

@ Some state [¢)) and Pauli matrix P. Estimate (| P |))
Let U[0") = |¢).
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Example: Expectation of Pauli Matrix

Some state [¢)) and Pauli matrix P. Estimate (¢| P |¢)
Let U|0") = |¢).
Standard method: Let VPV =1 ® 07, @07 ® |

0)"

Alternate method: exploit that P is unitary

0" H{UHPHUIH10)

e Postselection probability: |(| P [)|?. Almost what we want.
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Example: Expectation of Pauli Matrix

@ Smallest eigenvalue of P is —1, so:

‘ I+ P I+ P (Y| Py +1
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Example: Expectation of Pauli Matrix

@ Smallest eigenvalue of P is —1, so:

I+ P I+ P Y| Ply)+1
w1 P )| = L2 gy = W24
2 2
o If only we could multiply by ’+P rather than P...
rT T T T T == i
H+) +) )
[ [
n |
0) ﬂ T 1P Ut 10)
L - - - |

o Observe that ({(+| ® I)CTRL-P(|+) ® 1) = &P

Patrick Rall Algorithms from Block Encodings May 2020 5/22



Probabilistic mixtures of unitaries
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Probabilistic mixtures of unitaries

|Y) — Alp) where A= ZPiUi

@ Can ‘perform’ non-unitary operations!
Berry, Childs, Kothari, Somma - arXiv:1501.01715, arXiv:1511.02306
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Block-encodings

@ Even more general form of circuit:

@ U is a block-encoding of A if:

A=l nu e o u= "]

@ Limitation: spectral norm of A at is most 1. Add notion of scale:
@ U is an a-scaled block-encoding of A if:

Aa=(0lenuo) e o u= V]
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@ If you have an a-scaled block-encoding of A, you can:
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@ If you have an a-scaled block-encoding of A, you can:

) = AlY)

Al)

|) — 7‘A|¢>‘ with O(

i)

estimate |A |¢)] with O (%)
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Building block-encodings

Unitary matrices are ‘trivial’ block-encodings of themselves
— Pauli matrices!

Linear combinations:
A=), a;U; gives ), |aj|-scaled block-encoding
Multiplication AB and tensor products A ® B

Sparsity: Block-encoding from ‘sparse-access’ oracles

In practice, efficient block encodings exist for:

e Any observable you might care about
e Any hamiltonian you might care about
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Hamiltonian simulation via polynomials

@ Given: a-scaled block-encoding of hamiltonian H
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Hamiltonian simulation via polynomials

Given: a-scaled block-encoding of hamiltonian H

@ Goal: build block-encoding of et = cos(Ht) + i sin( Ht)
Approximate cos(Ht) and sin(Ht) via polynomials of H

Jacobi-Anger expansion — polynomial in H/«

sin(tH) = sin(ta(H/a)) = i2(—1)kJ2k+1(at) Toks1(H/ )
k=0

@ Jm(x) is modified Bessel function of the first kind.
Tm(x) is m'th Chebyshev polynomial.
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Hamiltonian simulation via polynomials

@ Given: a-scaled block-encoding of hamiltonian H

@ Goal: build block-encoding of et = cos(Ht) + i sin( Ht)
Approximate cos(Ht) and sin(Ht) via polynomials of H

@ Jacobi-Anger expansion — polynomial in H/«

sin(tH) = sin(ta(H/a)) = i2(—1)kJ2k+1(at) Toks1(H/ )
k=0

@ Jm(x) is modified Bessel function of the first kind.
Tm(x) is m'th Chebyshev polynomial.

o Truncate oo at K. Can make (H/a)¥ via multiplication, and build
polynomial via linear combination.
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Hamiltonian simulation via polynomials

@ Building polynomials via multiplication and linear combination

o Complicated circuit. Requires O(log(degree)) additional ancillas.
o Scale factor is O(K?) - still pretty large

@ Can do much much better:
Quantum singular value transformation / qubitization

Low, Chuang - arXiv:1606.02685, 1610.06536, arXiv:1707.05391
Gilyén, Su, Low, Wiebe - arXiv:1806.01838
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@ Can do much much better:
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Hamiltonian simulation via polynomials

@ Building polynomials via multiplication and linear combination

o Complicated circuit. Requires O(log(degree)) additional ancillas.
o Scale factor is O(K?) - still pretty large

@ Can do much much better:
Quantum singular value transformation / qubitization

Low, Chuang - arXiv:1606.02685, 1610.06536, arXiv:1707.05391
Gilyén, Su, Low, Wiebe - arXiv:1806.01838

0) — i0110)(0] e/0210)(0] |0)
; R P S S

@ Only O(1) additional ancilla, resulting block-encoding is O(1)-scaled.

@ Polynomial coefficients are encoded into 61, 6>, ...
See arXiv:2003.02831.
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Halfway-point - Summary

0) — 0) [A(oz ]

U U=

o Block-encodings can express any matrix
o New primitive operations:
AlY) .
) = Al) ) — TAIN estimate |A[¢)|
[Al)]
@ Construct e.g. via linear combinations of Pauli matrices

Singular value transformation: given H construct poly(H)

o Yields Hamiltonian simulation algorithm with complexity O(«a|t])
— better than naive Trotter!
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Halfway-point - Summary

0) — U 0) U [A(a ]

Block-encodings can express any matrix

New primitive operations:

A
) = Alg) |w>ﬁ|A:j§| estimate. |A[1))

Construct e.g. via linear combinations of Pauli matrices

Singular value transformation: given H construct poly(H)

o Yields Hamiltonian simulation algorithm with complexity O(«a|t])
— better than naive Trotter!

Good reference: Gilyén, Su, Low, Wiebe - arXiv:1806.01838
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Preparing ground states via e.g., Lin, Tong - arXiv:2002.12508.

@ Say we have a Hamiltonian H with:
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Preparing ground states via e.g., Lin, Tong - arXiv:2002.12508.

@ Say we have a Hamiltonian H with:
e Spectral gap A
e Known ground-state energy Eg
o Non-degenerate ground space

@ Construct polynomial approximation of Heaviside step function:

0 ifx>E+A)/2
p(X)zl_@(x—Eo—A/z):{ 1 ifx<Ez+A§2
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@ Say we have a Hamiltonian H with:
e Spectral gap A
e Known ground-state energy Eg
o Non-degenerate ground space
@ Construct polynomial approximation of Heaviside step function
)0 ifx>E+A/2
P)~1-Ox—E—A/2) = { 1 ifx<Ey+A)2

o Example construction: Chebyshev expansion of erf(kx) =~ ©(x)

o To be accurate within £A/2 need degree O(1/A), (arXiv:1707.05391)
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Preparing ground states via e.g., Lin, Tong - arXiv:2002.12508.

@ Say we have a Hamiltonian H with:
e Spectral gap A
e Known ground-state energy Eg
o Non-degenerate ground space

@ Construct polynomial approximation of Heaviside step function:

0 ifx>E+4/2
p(X)%l—@(X—EO—A/z):{ 1 ifx<E2+A§2

o Example construction: Chebyshev expansion of erf(kx) =~ ©(x)
o To be accurate within £A/2 need degree O(1/A), (arXiv:1707.05391)

o Then p(H) ~ |¢o) (0]
@ Algorithm based on a trial state |¢) with cost 1/ (¢|vo):

p(H)|#)
9= 1oty ey ~ Vo)
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Preparing thermal states via Chowdhury, Somma - arXiv:1603.02940

o Goal: Prepare ps = e #H/Z where Z = Tr(e=#H)

Patrick Rall Algorithms from Block Encodings May 2020 14 /22



Preparing thermal states via Chowdhury, Somma - arXiv:1603.02940

o Goal: Prepare ps = e #H/Z where Z = Tr(e=#H)

@ Hubbard-Stratonovich transformation:

o2 L / T e
27 J_

Patrick Rall Algorithms from Block Encodings May 2020 14 /22



Preparing thermal states via Chowdhury, Somma - arXiv:1603.02940

o Goal: Prepare ps = e #H/Z where Z = Tr(e=#H)

@ Hubbard-Stratonovich transformation:

o2 L / T e
27 J_

@ Chain of polynomial approximations:
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Preparing thermal states via Chowdhury, Somma - arXiv:1603.02940

o Goal: Prepare ps = e #H/Z where Z = Tr(e=#H)

@ Hubbard-Stratonovich transformation:

o2 L / T e
27 J_

@ Chain of polynomial approximations:
BH — \/BH — e¥VBH _; ¢=FH/2
@ Multiply maximally mixed state //D:

| e PHRLe MR gH)p  goH

D Tr(ePHRLepHE) T Z/D | Z

Patrick Rall Algorithms from Block Encodings May 2020 14 /22



Preparing thermal states via Chowdhury, Somma - arXiv:1603.02940

o Goal: Prepare ps = e #H/Z where Z = Tr(e=#H)
@ Hubbard-Stratonovich transformation:

o2 L / T e
27 J_

@ Chain of polynomial approximations:
BH — \/BH — e¥VBH _; ¢=FH/2
@ Multiply maximally mixed state //D:

| e PHRLe MR gH)p  goH

D Tr(ePHRLepHE) T Z/D | Z

e Complexity: O(v/f-D/Z)
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Expectations of mixed states (this work)

e How to get quadratic speed-up for estimation of Tr(pO)?
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Expectations of mixed states (this work)

e How to get quadratic speed-up for estimation of Tr(pO)?
e Say |¢) is a purification of p: p = Trp(|Y) (¥|)
@ Say U prepares [¢). Then:

07— H.OoH 07)
U Ut
0%) — — 10%)

= [@(O@ N [)] = [Tr(|4) (¥ 0)| = [Tr(pO))]
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n-time correlation functions (this work)

@ Observable in Heisenberg picture:

Oi(ti) — eth,' Oiefth,'
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n-time correlation functions (this work)

@ Observable in Heisenberg picture:
Oi(ti) — eth,' Oiefth,'
o To estimate (O1(t1)O2(t2)...On(ts)), construct block encoding:

= H Ol(tl) — eth1 O]_eiH(tZ_tl)O2eiH(t3_t2)...Onethn

o [ is not hermitian, so expectation is complex.

F+rf

Real part: Tr <p —; >

. r—rt
Imaginary part: Tr|p o7
i
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n-time correlation functions (this work)

@ Observable in Heisenberg picture:
Oi(ti) — eth,' Oiefth,'
o To estimate (O1(t1)O2(t2)...On(ts)), construct block encoding:

= H Ol(tl) — eth1 O]_eiH(tZ_tl)O2eiH(t3_t2)...Onethn

o [ is not hermitian, so expectation is complex.

F+rf

Real part: Tr <p —; >

. r—rt
Imaginary part: Tr|p o7
i

@ Improves over Pedernales et al. arXiv:1401.2430
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Density of states (this work)

@ Say H has eigenvalues E;.

o(E) = 5 3" 3(E )
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Density of states (this work)

@ Say H has eigenvalues E;.
1
p(E) = 5 > o(Ei— E)

@ Problems with evaluating p(E):

e Has non-smooth ‘spikey’ shape at high resolutions
o #P-complete to compute exactly

@ Usually interested in histograms or ‘sketches’ of p(E)
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Density of states (this work)

e Histogram bin: fE (E)dE
0ifx < E,

w(x) = rectg, g,(x) = { 1if E,<x<E
0if Ep < x
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e Histogram bin: fE (E)dE
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w(x) = rectg, g,(x) = { 1if E,<x<E
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e Construct e.g., by adding two erf(x) approximations, or using
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Density of states (this work)

e Histogram bin: fE (E)dE
0ifx < E,
w(x) = rectg, g,(x) = { 1if E,<x<E
0if Ep < x
e Construct e.g., by adding two erf(x) approximations, or using
Jackson'’s theorem and amplifying polynomials.
Then Tr (%W(H)) estimates bin value.

@ Roggero - arXiv:2004.04889 - Point estimates

p(E) = Tr (53(H — E)) =~ Tr (e("-E/2) = Tr (fpoly(H))
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Density of states (this work)

e Histogram bin: fE (E)dE
0if x < Ej
w(x) = rectg, g,(x) = { 1if E,<x<E
0if B < x

Construct e.g., by adding two erf(x) approximations, or using
Jackson'’s theorem and amplifying polynomials.
Then Tr (%W(H)) estimates bin value.

@ Roggero - arXiv:2004.04889 - Point estimates

p(E) = Tr (53(H — E)) =~ Tr (e("-E/2) = Tr (fpoly(H))

Both improve upon phase-estimation method.
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Kernel Polynomial Method (this work)

@ Method for sketching p(E): Chebyshev decomposition

1
unz/ Th(E)p(E)dE

-1

N
p(E) ~ m/11—7E2 <gouo + 2ZungnTn(E)>

n=0
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Kernel Polynomial Method (this work)

@ Method for sketching p(E): Chebyshev decomposition

1
,Un:/ Th(E)p(E)dE

-1

N
p(E) ~ m/11—7E2 <gouo + 2ZungnTn(E)>

n=0

@ Scale H so that energies fall into [—1, 1]. g, are independent of p.
See arXiv:0504627.
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Kernel Polynomial Method (this work)

@ Method for sketching p(E): Chebyshev decomposition

1
,Un:/ Th(E)p(E)dE

-1

N
p(E) ~ m/11—7E2 <gouo + 2ZungnTn(E)>

n=0

@ Scale H so that energies fall into [—1, 1]. g, are independent of p.
See arXiv:0504627.

e Quantum singular value transformation makes T,(H) very easy:

10) 2/10) (0] €/10) (0] 0)

Patrick Rall Algorithms from Block Encodings May 2020 19 /22




Other quantities (this work)

@ Similar strategies work for:
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Other quantities (this work)

@ Similar strategies work for:
@ Local density of states.

e [¢(F)) is wavefunction of particle at 7
e [|1;) are eigenstates of H

pA{E) = 30 0(E = ) ({71
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Other quantities (this work)

@ Similar strategies work for:
@ Local density of states.

e [¢(F)) is wavefunction of particle at 7
e [|1;) are eigenstates of H

pA{E) = 30 0(E = ) ({71

@ Correlation functions in linear response theory:
e Some observables B, C.

A(E) = (BS(H — E — E)C)
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Thank you for your attention!

Special thanks to: Scott Aaronson, Andras Gilyén,
Andrew Potter, Justin Thaler, Chunhao Wang,
Alexander Weisse and Alexandro Roggero
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Oblivious amplitude amplification

@ Primitive operation:

Aly)
[AlY) |

Requires O (\AIUJ)I) applications of both A and preparations of |1))

) —

What if [¢) is very expensive to prepare?
Oblivious amplitude amplification arXiv:1312.1414

If Ais (approximately) unitary, need exactly one copy of |¢)
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