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Abstract
With the increasing importance of robot-assisted, minimally-invasive medical surgery, the ability to precisely measure physical
parameters with fiber-optic sensors has become a significant objective in medical technology. In particular, the currently
achievable pixel resolution of diffraction-grating spectrometers is only in the range of several tens (if not hundreds) of pm, while
many fiber Bragg grating (FBG) sensors have linear temperature coefficients of ∼ 5 pm

K and strain coefficients of ∼ 1 pm
µm·m−1 [1].

Thus, it is often necessary to use subpixel detection techniques (e.g. Gaussian fits, centroid detection) on FBG spectra to
determine their Bragg wavelength, and thereby ascertain information about physical parameters. Unfortunately, as we discuss,
these techniques do not produce linear regression models with sufficiently low residuals of parameters like temperature or strain.
In a novel approach, we employ a brute-force algorithm that seeks to replicate a spectrometer’s measurement response to FBG
spectra. Using previously-collected high-resolution optical spectrum analyzer (OSA) data for a given Bragg wavelength, as well
as spectrometer-specific measurements, we implement a process of “profile” generation to produce a bin-by-bin estimate of the
spectrometer’s expected output. By fitting these pre-generated profiles to low-resolution real spectrometer measurements, we
can achieve higher levels of precision in Bragg wavelength measurement, better linear regression models, and significantly lower
residuals compared to existing methods such as the LPO4 (linear phase operator) technique described in [1]. Moreover, while
we primarily investigate one specific type of spectrometer (manufactured with optics from Ibsen Photonics and custom-made
electronics), the technique can be adapted to other spectrometers by taking into account their light source and their bin-by-bin
response to a tunable laser.

I. Introduction

As fiber-optic sensors become more valuable in medical surgery
and other fields due to their small size, manipulability, ver-
satility, and immunity to electromagnetic interference, it is
increasingly important to develop systems with high levels
of measurement precision. A particularly important type of
sensor in the field of fiber optics is the Fiber Bragg Grating
(FBG), which can respond to applied strains (ε) as well as
changes in temperature (∆T ). These gratings have, over the
past few decades, emerged as one of the world’s most widely
used fiber-optic devices due to their linear response to various
stimuli.

FBGs consist of periodic perturbations of a fiber core’s re-
fractive index along its length (see Figure 1). These variations
are formed by exposing the core to intense ultraviolet light
through a periodically corrugated phase mask (approximating
a square wave in profile), which is usually constructed from
silica glass. When this ultraviolet light comes in contact with
the optical fiber, the fiber’s refractive index is changed almost
permanently at wavelengths much higher than that of the
irradiating light; this phenomenon is known as “photosensi-
tivity” [2]. While the mechanisms behind photosensitivity
are not completely understood, the refractive index change
(∆n ≡ n2 − n1) has been shown to be correlated with the
structural rearrangement of the glass matrix [3] and the pho-
toinduced paramagnetism of donor-vacancy pairs (particularly
with germanium-doped cores) [4].

The index modulation of FBGs is interesting due to the
reflective properties that result from it. At a certain FBG-
dependent wavelength λB - known as the Bragg wavelength
- each reflection from a crest in the index variation is in
phase with the next crest coming in at λB. As a result, a
very narrow band of the incident optical field is reflected

Figure 1: Variation of refractive index between n1 and n2 as
a function of z (the fiber axis) for a non-apodized,
uniform FBG without chirping (i.e. where the period
of index modulation is constant).

by coherent scattering, with the strongest mode-coupling
interaction occurring at the wavelength λB . This reflectivity
response is shown in Figure 2, and features a distinct peak
that occurs at the Bragg wavelength. For the specific case of
a non-apodized, non-chirped grating (with the assumption of
two-mode coupling), it is a well-known result in the literature
that the power reflection coefficient at the incident end of an
FBG is given by [1]:

R =
κ2 sinh2

(
L
√
κ2 − σ̂2

)
κ2 cosh2

(
L
√
κ2 − σ̂2

)
− σ̂2

(1)

Where L is the FBG’s length and κ and σ̂ are inversely λ-
dependent coupling coefficients for the AC component and
common modes respectively. In practice, however, we do not
generally observe as symmetrical or trigonometrically well-
behaved a response as the theory suggests; thus, an FBG’s
reflectivity spectrum cannot easily be described analytically.
The Bragg wavelength is particularly useful since it re-

sponds linearly to various external stimuli such as tempera-
ture and strain. This response manifests itself as a shift in the
reflectivity spectrum, and is entirely independent of optical
intensity (when measuring reflected power as a percentage
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Figure 2: An example of various reflectivity responses for the
same FBG, collected at different temperatures through
a narrow-bandwidth (5-pm resolution) optical spectrum
analyzer. In this case, we see a Kaiser-like peak with
assymetrical sidelobes. The shift in Bragg wavelength
over this 40.0◦C range is ∼ 1.2 nm.

of incident power). In Figure 2, we see, however, that this
response is relatively minuscule; with a 40.0◦C increase in
temperature, we only observe a λB shift of ∼ 1.2 nm.

As many spectrometers are incapable of producing a wave-
length resolution of < 10 pm while still delivering data at a
sufficiently frequent rate, it is still very challenging to extract
high-precision information from FBGs. Given the difficulties
in describing FBGs analytically, several alternative subpixel
detection algorithms (SDAs) have been developed to deter-
mine Bragg wavelengths from the bins in spectrometer data.
These include:

1. A Gaussian fit as an approximation for the FBG’s overall
shape (including the sidelobes). Earlier, the Gaussian
was assumed to be the actual shape of FBG spectra
due to apodizations in the data caused by lower laser
coherence lengths (and hence decreased fringe contrast).

2. A Kaiser window function fit, defined in Section VIII,
taking into account the fact that actual spectra exhibit a
shorter decay factor compared to the Gaussian shape [1].

3. A simple, weighted-average centroid detection algorithm
(CDA).

4. The linear phase operator (LPO) technique described
in [1]. This algorithm applies a finite impulse response
(FIR) filter to points around the peak bin to produce an
output sequence, which serves as an approximation to the
differentiator of the FBG spectrum. By applying linear
interpolation on the intensities around the zero-crossing
of this differentiator, we achieve a subpixel estimate of
the spectrum’s peak.

However, as we see in Section VIII, these three techniques
fail to produce a linear regression model with sufficiently small

standard deviations, and often indicate systematic patterns in
their residual plots. Moreover, since spectrometer bins are not
always evenly spaced in the wavelength domain, the subpixel
approach taken by these methods is not always appropriate.
While interpolation between bins can serve as a possible fix
to this issue, this can - for instance - significantly change the
transfer function used in the LPO technique for approximating
the spectrum’s differentiator.

In this article, we instead apply a new approach that effec-
tively emulates how the spectrometer actually collects data
for a given FBG. We begin by taking a high-resolution (1-
pm) optical spectrum analyzer (OSA) spectrum of our FBG
at a given reference temperature. By taking into account
the SLED light source of our spectrometer and each bin’s
response to a narrow-bandwidth, constant-intensity laser, we
can estimate how each of the 80 channels of our spectrom-
eter would respond to this FBG spectrum. This results in
a spectrometer “profile” for a given Bragg wavelength (we
do not determine the actual λB however). We then take our
OSA data and shift it (by some multiple of 1 pm) to simulate
a change in the Bragg wavelength, and repeat the process
of profile generation. By repeating this process over a shift
range of ±1.1 nm, we are usually able to generate enough
profiles for a given FBG. We can then take these profiles
and compare them against incoming spectrometer data; this
in turn allows us to ascertain how much our FBG’s Bragg
wavelength has shifted relative to our reference temperature.
If we use spectrometer data measured at a known temper-
ature, then we can additionally produce a ∆λ vs. ∆T plot
through this method, and can subsequently apply regression
to produce a linear model for our FBG. Since we are primarily
interested in the shift of the Bragg wavelength, this approach
successfully allows us to determine temperature changes and
strain without actually determining the Bragg wavelength.
This process succeeds in producing a model with lower

standard deviations in temperature prediction than the LPO4
technique described in [1] (previously assumed to provide
the best overall resolution gain factor of all SDAs). For
instance, with one specific FBG, we were able to surpass
LPO4 and demonstrate standard deviations of ∼ 0.1 K in
our temperature estimation over a range of T ∈ [10◦C, 50◦C],
which is sufficiently low for many uses in medical technology.

The contents of this article are organized as follows. In
Section II, we briefly examine the theory of Bragg wavelengths
and step through some important assumptions that have
been made to deduce the FBG’s linear response. Next, in
Section III, we describe the process we used to generate our
spectrometer profiles from OSA data. We then elaborate
further on our equipment and data collection methods in
Section IV, before describing our profile fitting process and
results in Sections V and VI respectively.

In order to optimize our fitting algorithm, we also take steps
to minimize comparisons and arithmetic operations. Specifi-
cally, we use layered searches in place of a single sequential
search, and try to make our profiles as small as possible (in
terms of number of bins) while still retaining accuracy. Some
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noticeable results related to this optimization are discussed
in Section VII. Lastly, in Section VIII, we compare our algo-
rithm with existing SDAs and examine the relative benefits
and drawbacks of the results we achieve.

II. Bragg Wavelength Theory Overview

In this section we briefly overview the theory behind the
FBG’s linear response to temperature and strain. Essentially,
the periodic perturbations of the refractive index of the fiber
core create a band-stop filter for a narrow wavelength band
of incident light; this results from coherent scattering due to
the index variation. The strongest such interaction occurs
at a specific wavelength λB , known as the Bragg wavelength.
We can describe this effect more precisely with coupled mode
theory [1]. The propagation of light in fibers can be described
by fiber modes resulting from Maxwell’s field equations in
a dielectric medium with perturbed permittivities. Let the
z axis define the propagation axis along the length of the
fiber. Applying coupled mode theory, we assume that the
transverse component of the electric field ~Et can be expressed
as a superposition of i modes with amplitude Ai propagating
in the positive z direction and amplitude Bi propagating in
the negative z direction. If we additionally assume that these
oppositely propagating modes have the same real propagation
constant βi, then we have for the transverse electric field
along the fiber [1]:

~Et(x, y, z, t) =
∑
i

[
Ai(z) · ejβiz · ~eit(x, y) · e−jωt +

Bi(z) · e−jβiz · ~eit(x, y) · e−jωt
] (2)

Where ~eit(x, y) describes the transverse mode field in the
plane normal to the mode’s propagation. The actual values
for Ai and Bi of a specific mode are linked to the values
Ak and Bk of all of the other modes through a transverse
coupling coefficient Ctki(z) (the longitudinal component is
assumed to be negligible). To simplify the coupled differ-
ential equations that arise in determining Ai and Bi, we
assume a uniform grating with constant coupling coefficient
over its entire length, and additionally reduce the number
of modes to a single dominant transverse mode propagating
in the positive and negative directions along the length of
the fiber (with propagation constants of β01 and −β01). This
mode is designated in literature as the LP01 mode, as it is
the dominant mode solution to the three-dimensional scalar
wave equation for which the electric field is linearly polarized.
Note that we use the scalar wave equation to arrive at an
approximate modal field description instead of solving the
full set of Maxwell’s equations; this is a valid approximation
under the weakly guiding condition, where we assume that
the difference between the refractive indexes of the core and
cladding is small (usually less than 1%).

With the above simplifications, the strongest mode-coupling
then occurs at a specific wavelength λB where the incident
mode is optimally coupled with the counter-propagating mode

and thus reflected; these two modes must meet the phase-
matching condition specified by the core’s grating period Λ
in order to interact coherently, and so we arrive at the simple
condition that:

2π

Λ
= β01 − (−β01) = 2β01 (3)

In order to satisfy the conditions for a mode in a vacuum,
we must have β01 = 2π

λB
. For an FBG, we instead introduce a

term neff as our “effective” refractive modal index (defined as
a frequency-dependent [1] combination of the indices n1 and
n2 from Figure 1), in order to state β01 = 2πneff

λB
and thus:

λB = 2neffΛ (4)

Equation (4) signifies the dependence of the Bragg wave-
length on changes in fiber properties, since any variation
in strain, temperature, or polarization will vary the modal
index neff and grating period Λ, and will thus change the
Bragg wavelength. Moreover, we see that an FBG sensor’s
response to external stimuli is entirely contained in its Bragg
wavelength; shifts in the narrow-band reflection spectrum
are independent of optical intensity and depend solely on
the manufacturing process for the gratings. We can use a
linear approximation with (4) to find this change in the Bragg
wavelength with respect to strain and temperature.

∆λB
λB0

=
∆ΛB(εi; ∆T )

ΛB0
+

∆neff(εi; ∆T )

neff,0
, i = 1 ... 6 (5)

Where the index 0 signifies the FBG’s properties at some
arbitrary reference temperature T0 and strain 0. Since the
strain tensor is symmetric for our fiber (oriented along the
z-axis as before), the index i is used in accordance with Voigt
notation such that ε1 = εxx, ε2 = εyy, ε3 = εzz, ε4 = 2 · εyz,
ε5 = 2 · εxz, and ε6 = 2 · εxy.

Since the FBG is oriented along the z axis, a change of the
spacing Λ must be affected by the strain ε3, giving ε3 = ∆ΛB

ΛB0
.

This strain can be caused by thermal expansion (in which
case we have ε3 = α ·∆T , where α is the linear temperature
elongation constant), or by mechanical strain εm (in which
case we have εm · E = F

A , where A is cross-sectional area, F
is applied force, and E is the tensile modulus of the fiber).
The response of the effective modal index to changes

in the strain is determined by the Pockel’s coefficients
p11 and p12 of the fiber. In the case of pure mechanical
strain (without temperature shifts), we find that ∆neff

neff,0
=

−n2
eff,0

2 [p11εt + p12(ε3 + εt)] [2], where εt represents strains
transverse to the z axis. Thus, when purely mechanical strain
is applied, we have:

∆λB
λB0

= ε3 −
n2
eff,0

2
[p11εt + p12(ε3 + εt)] (6)

We now assume that the strain is axial and isotropic. In
order to account for lateral contraction due to the axial strain
ε3, we introduce the Poisson ratio ν such that εt = −νε3, giv-
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Figure 3: The response of λB to various pressures for an FBG
coated with a thick Hysol jacket, adapted from [2].

ing ∆λB

λB0
= ε3

(
1− n2

eff,0

2 [p12 − ν · (p11 + p12)]
)
. Introducing

the effective photoelastic coefficient peff [1], we arrive at the
desired linear result:

∆λB
λB0

= (1− peff) ε3 (7)

In practice, this strain response is indeed linear for temper-
atures as high as 370◦C [5]; this is demonstrated in Figure 3.

Lastly, the response of the effective modal index to changes
in temperature (in the absence of mechanical strain) depends
on the thermo-optic coefficient αn = 1

neff,0
· dneffdT . Substituting

in ∆neff
neff,0

= αn∆T and using the fact that ∆ΛB

ΛB0
= α∆T (where

α is the thermo-elastic coefficient as found above), we arrive
at a linear result for pure temperature shifts:

∆λB
λB0

= (α+ αn) ∆T (8)

However, unlike the case with mechanical strain, this sen-
sitivity response does become slightly nonlinear at higher
temperatures [1]. In these cases, a quadratic polynomial
approximation can work well instead.
Overall, the theory of Bragg wavelengths, assuming our

abovementioned simplifications, indicates that we expect a
linear response in measuring λB as a function of strain or
temperature. Thus, our algorithms should also reflect this
with no systematic pattern in our residuals. Nonetheless,
since we are exclusively looking at temperature responses in
this paper, we do expect to see a slight U-shaped pattern in
our residuals, which would indicate that a quadratic fit might
be slightly more suitable.

III. Profile Generation Process

To generate spectrometer profiles for a given FBG with respect
to a given reference temperature, we must account for all of the
factors that go into the spectrometer’s measurement process.
In order to do this, we use the following steps, which are
described in further detail in subsections I through III:

Figure 4: Emulated spectrometer profiles generated for FBG 8
(see Section IV) with a reference temperature of 25◦C
corresponding to offsets of 0 pm and 200 pm.

1. Collect high-resolution (picometer-precision) OSA data
for a given FBG and reference temperature over a suffi-
ciently large wavelength domain of λ ∈ [λmin, λmax].

2. To investigate how each bin of the spectrometer responds
to a constant-intensity beam of light at a given wave-
length, collect the “sweep factor” data described in sub-
section I.

• This must span over a wavelength domain of λ ∈
[λmin, λmax] and should have the same resolution as
the OSA data (interpolation may be necessary).

• We refer to the ith bin’s sweep factor as Psweep,i(λ).

3. Furthermore, to account for the uneven optical density
produced by our superluminescent light-emitting diode
(SLED) source (see subsection II), we measure its broad-
band optical spectrum.

• Once again, this must span over a wavelength do-
main of λ ∈ [λmin, λmax] and should have the same
resolution as the OSA data (interpolation may be
necessary).

• We refer to this SLED spectrum as PSLED(λ).

4. Apply a Gaussian fit on the ten highest points of the
OSA data. This will allow us to determine a ballpark
estimate of the Bragg wavelength λB (in nm) at this
temperature.

• Note that we do not attach too much importance
to the actual value of this Bragg wavelength; in-
stead, we simply use it to determine relative shifts
(∆λ) and give each spectrometer profile a somewhat
accurate absolute label for the Bragg wavelength.

• We also make use of this Bragg wavelength to deter-
mine which bins the profile will be centered around
(see subsection III).
• Overall, the choice of the Gaussian fit was arbitrary.

5. Shift the OSA data by x pixels (in any direction) to
simulate a shift in the Bragg wavelength. Since the data
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were collected with picometer precision, this gives us a
new Bragg wavelength of λB,new = λB + x

1000 nm.

• We refer to this shifted OSA spectrum as
Pshifted,x(λ).

6. Using the bin boundaries of the spectrometer, determine
the bin number that will contain λB,new. The process of
determining the middle 78 bin boundaries of our spec-
trometer is described in subsection III.

7. To generate a profile of width w (where w is an odd
integer), consider the w−1

2 bins on either side of the
abovementioned central channel. Let N be the set of all
of these bin numbers.

8. The “integrated profile value” corresponding to the nth
bin for a shift of x pm is then given by the following
integral:

Profile (n, x) =

∫
λ

Pshifted,x(λ) · Psweep,n(λ) ·

PSLED(λ) dλ

(9)

• Where λ represents the largest possible wave-
length domain that is covered by all three of the
above power functions. This is no longer simply
[λmin, λmax] because of data shifting.

• Calculate (9) for all n ∈ N to generate this profile.

9. Lastly, repeat steps 5 through 8 for x ∈ [−1100, 1100]
pm with a 1-pm step size. For most cases, this range will
cover all profiles of interest.

Two example profiles generated through this process are
shown in Figure 4. Qualitatively, the shift in λB between
these two profiles is apparent.
For the remainder of this section, we will discuss further

details about the sweep factors, SLED light source, and bin
boundary data used in the above procedure. The procedure
used to fit profiles with actual (low-resolution) spectrometer
data is presented in Section V.

I. “Sweep Factor” Generation

The spectrometer we use in this article was manufactured with
80 bins of uneven width in the wavelength domain. In order
to emulate how the spectrometer would react to a given FBG
spectrum, we first observed how each channel responded as
we swept over a range of λ ∈ [1528, 1562] nm with a constant-
intensity 1-pm bandwidth tunable laser. This resulted in
the generation of several “sweep factors” for each channel, as
demonstrated in Figure 5 for the particular cases of channels
0 and 1.
While we expected these sweep factors to be smooth, we

observed a constant jitter in our results, as demonstrated by
the jagged edges of the curves in Figure 5. Since this jitter
was present at regular intervals of ∼ 10 pm in our data, we
hypothesized that our tunable laser had systematic flaws that

Figure 5: Picometer-resolution sweep factors for channels 0
(black) and 1 (blue) collected with a tunable laser. Note
that these data are unfiltered.

Figure 6: The optical spectrum of the SLED source used in this
paper, showing the expected inverted U-shaped pattern.

prevented it from reaching its theoretical 1-pm resolution. In
fact, further analysis with external optical reference systems
(i.e. an interferometer and power meter) demonstrated that
our tunable laser is unstable with an uncertainty of ∼ 1 pm
when tuned to certain wavelengths.

In order to remove this high-frequency noise from our data,
we applied a tenth-order low-pass Butterworth filter with a
cutoff frequency of 30.0 nm−1. This allowed us to generate 80
filtered sweep factors that accurately and precisely captured
each bin’s response to constant-intensity light.

II. Accounting for the SLED Source

Our spectrometer was used in conjunction with a superlumi-
nescent light-emitting diode (SLED) optical source. SLEDs
are particularly advantageous for FBGs since their low tem-
poral coherence prevents unwanted interference effects and
allows for a broadband optical power spectrum; this in turn
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Figure 7: In red, we see the normalized and filtered sum of all
80 channels’ sweep factors as a function of wavelength.
Relative minima are marked in blue and are used to
determine bin “boundaries” for the middle 78 channels.

allows for multiple FBGs to be addressed simultaneously. In
addition, their high spatial coherence allows for low diver-
gence angles, and therefore permits higher coupling efficiency
into a single-mode fiber.

However, since the optical power from an SLED is emitted
over a wide spectral range, we end up observing an inverted
U-shaped pattern for optical power density as a function of
wavelength; this pattern is to be expected for any SLED
source. For our SLED, we have a manufacturer-specified
central wavelength of ∼ 1550 nm and a full width at half-
maximum (FWHM) of 50 nm; Figure 6 is in agreement with
these specifications.
In our setup, both the high-resolution OSA and the spec-

trometer use the same SLED source. However, the OSA can
measure the light source’s spectrum, take it as a reference,
and measure the FBG spectra against it. On the other hand,
this is not possible for the spectrometer as there are inherent
differences between how these two instruments collect data.
Thus, any attempt at getting rid of the light source spectrum
in the spectrometer data would end up adulterating the FBG
spectrum. Instead, we take the high-resolution data from
the OSA and re-apply the SLED optical density spectrum in
order to emulate the spectrometer’s behavior and generate
our profiles.

III. Bin Boundary Determination

In order to connect generated profiles to actual channels
in the spectrometer (as described in step 6 of the above
procedure), it was necessary to determine the spectrometer’s
bin boundaries. These bin boundaries would also be required
to compare our algorithm with other SDAs (e.g. LPO heavily
relies upon the idea of evenly spaced “pixels”). However,
the notion of a bin boundary is not very well-defined; as we
can see in Figure 5, channels 0 and 1 overlap significantly
in wavelength space. One possible, unambiguous method of
determining the boundary between these two channels is to
sum their sweep factors for each wavelength and determine
the relative minimum that occurs in the resulting graph. For
the remainder of this article, it will be assumed that all bin
boundaries were determined through this process.

Unfortunately, given the jitter in each individual sweep
factor, the sum of all 80 channels’ sweep factors ended up
being especially noisy. In order to actually extract meaningful
information from these data, we once again applied a tenth-
order low-pass Butterworth filter with a cutoff frequency of
30.0 nm−1. This allowed us to more easily determine the
boundaries between all 80 bins, as shown in Figure 7. Of
course, this method cannot be used to assign lower and upper
bin boundaries for the first and last channels (respectively)
of the spectrometer, so our procedure does not work on the
extreme ends of the spectrometer. Nonetheless, given the
particularly broadband spectrum of the SLED and the sub-
optimal positions of channels 0 and 79, we will assume that
these extreme channels of the spectrometer will not be used
in any case. Thus, the boundaries of the middle 78 bins ought
to be sufficient.

As mentioned in subsection I, the bins of our spectrometer
were manufactured with uneven “widths” in the wavelength
domain. This was additionally verified through our boundary
determination procedure, where we found an average bin
width of 399.2 pm with a standard deviation of 25.5 pm and
an overall range of ∆λ ∈ [349, 472] pm. Clearly, this degree
of variation will not bode well for LPO, as the FIR technique
used to determine the differentiator sequence relies on the
even spacing of “pixels” [1]. Unfortunately, this discrepancy
cannot easily (and consistently) be fixed across all existing
spectrometers.

IV. Equipment and Data Collection

In this section, we examine the equipment used to produce our
results, in addition to some specifics about our data collection
methods.

I. Fiber Bragg Gratings

We use four different FBG sensors in our setup; for the
remainder of this paper, these will be referred to as FBGs 1,
3, 5, and 8. All four gratings are 2.5 mm in length and are
written into a Corning R© SMF-28

TM
single-mode optical fiber

to a reflectivity of ∼ 50%. This fiber has a refractive index
difference of 0.36% between its core and cladding, and so
the weakly guiding approximation for single-mode fibers (see
Section II) is valid. These gratings are then glued into the
middle of metallic 20-mm-long tubes with an epoxy adhesive.
The outer diameter of these tubes is around 0.7 mm, while
the inner diameter is only slightly larger than the cladding’s
diameter (125µm).

Our four samples are distinguished not only by their Bragg
wavelengths, but also by the alloy of the metallic tubes into
which they are glued. One of the most significant differences
between these alloys (for the purposes of our analysis) is
their temperature response. In particular, these alloys not
only have different coefficients of thermal expansion, but also
demonstrate qualitatively different reactions (i.e. somewhat
linear vs. very non-linear) to changes in temperature. For
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example, the alloy for FBG 1 is known to have very non-linear
temperature characteristics, as we will see in Section VI.

Any further details regarding these metallic alloys are not
disclosed in this paper since they involve patent-pending
technologies.

II. Measurement Equipment

Figure 8: Schematic of how the SLED and spectrometer (or OSA)
interface with the various FBGs in our setup.

A general schematic of our setup can be found in Figure 8;
we expand on the specific equipment and terminology of this
diagram in the following paragraphs.

The temperatures of our FBGs’ metallic alloys are adjusted
via a custom-made assembly controlled by a Newport R© 8350
40W Thermoelectric Cooler (TEC) module with a 100µA
thermistor. This module accommodates a temperature range
of [−100.0◦C, 240.00◦C] with a display resolution of 0.01◦C
and an accuracy of 0.1◦C. Thus, any temperature residuals
of < 0.1◦C in our regression models can be partly attributed
to measurement error.
In order to interrogate our FBGs, we use a near-infrared

Thorlabs R© SLD1005S SLED as our light source. This SLED
has a central wavelength of ∼ 1550 nm and a FWHM of 50
nm; since our spectrometer is concerned with a wavelength
range of [1528 nm, 1562 nm], this is a sufficiently large range
for our purposes.

The light from our SLED is channeled into our four different
FBGs through the use of an Agilent R© 86062C Lightwave
Switch. The resulting FBG response is measured through
either an OSA or a spectrometer.

In order to produce our high-resolution OSA data, we made
use of an Agilent R© Advantest Q8384 spectrum analyzer with
built-in light source calibration. Our data was collected by
setting the OSA’s sweep mode to “normal.” While this spec-
trum analyzer has a documented optimal resolution setting of
10 pm, we can improve this to a 5 pm resolution by using 1000
samples (as opposed to the default 500) for each 5 nm range.
In order to achieve the picometer-precision shifts specified in
Section III, we then apply linear interpolation as appropriate.
Our spectrometer was designed with optics from Ibsen

Photonics and custom-made electronics; a raw data flow
schematic is presented in Figure 9. After a steady temperature
reading was reached, we collected 24-bit data from all 80 bins
at a sampling rate of 3 kHz. The dimensions of these data

are specified as “arbitary units” throughout this paper, yet
they are related to the photocurrent (in pA) measured by the
spectrometer via the following transfer function:

Figure 9: Raw data flow for our spectrometer (boxed on the left),
adapted and modified from Figure 5.16 of [1].

Spectrometer Reading =
13

1.59
· (Photocurrent (pA)) + 16384 (10)

In order to remove noise, the spectrometer data used in
this report were averaged over 250 samples. This resulted in
a data production rate of 12 spectra per second.

One important distinction to note about our spectrometer
is that we use a photodiode array instead of a CCD detector
to collect our FBG’s reflectivity response. Photodiode arrays
are advantageous since they allow for simple parallel readout
of bins. On the other hand, CCDs often demonstrate charge
bleeding across pixels when one attempts to conduct dynamic
measurements.

Finally, our bin-wise sweep factors were collected by using
an Agilent R© 8190A compact tunable laser source in conjunc-
tion with our spectrometer. Through the use of external
optical reference systems, the sweep mode of this picometer-
precision laser was found to be unstable when sweeping at a
rate of less than 5 pm

s . This was visible in the interferometer
output: almost every 10 pm, there seemed to be an in-built
correction mechanism in the 8190A that caused the laser
wavelength to suddenly jump up or down. Thus, a discrete
one-picometer stepping mode was used instead. While we
still noticed an uncertainty of ∼ 1 pm with this mode when
tuned to certain wavelengths, we were able to produce more
reliable and accurate results relative to the sweep mode.

V. Profile Fit Process

The procedure of finding a given Bragg wavelength will be
run in real-time on a dedicated device connected directly to
the spectrometer. The implemented algorithm must hence be
fast enough to compute the λB in real time without sacrificing
precision. Since we expect wavelength changes on the order
of 5 pm

K for temperature and 1 pm
µm·m−1 [1] for strain, we aim

for picometer-level precision in our algorithm.

I. Layered Searches to Reduce Comparisons

Over a variation range of ∼ 1.2 nm (which is expected for a
40.0◦C temperature range), this implies ∼1200 profiles. One
of these profiles must be selected at high precision with each
iteration. With a fitting function, we assign each profile a
“quality factor”, and search over this range of λB shifts to find
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the profile with the best quality factor. To avoid fitting 1000s
of profiles with every iteration – each fit requiring several
possibly elaborate operations – we perform the search in
“layers.” This involves splitting the wavelength range of ∼ 1.2
nm into smaller “sections” and computing the quality factor
for each section’s central profile. We then compare the quality
factors of these profiles and use the best profile’s wavelength
as an approximate indicator for the wavelength of the overall
best profile. For our next iteration, we can thus limit our
search range to wavelengths within one “section” of the most
recent best profile. We can execute several search layers like
this, before finally performing a picometer-resolution search
over a comparatively small range. This simplification works
provided the spectrum of qualities is single-peaked, which is
usually the case.
For initial testing in a simulation, we employ our search

algorithm on 400 measurements from the spectrometer, which
were taken over a temperature range of 10.0◦C to 50.0◦C in
intervals of 0.1◦C. These were collected over time intervals on
the order of minutes, which is longer than what is expected
in application, meaning that the spectra in this article will
contain less noise than in practice. A lower-noise sample is
appropriate for this simulation as we wish to test the accuracy
of the algorithm rather than the sensor as a whole. Additional
noise would make correctly identified Bragg wavelengths diffi-
cult to distinguish from incorrect identifications.

We generate profiles using high-resolution OSA spectra for
our four FBGs, each collected at reference temperatures of
15.0◦C, 25.0◦C, and 45.0◦C. In this simulation, we search over
a conservatively large profile offset interval of ±1.1 nm, i.e. a
total width of 2.2 nm, which gives us 2200 profiles to select
from. A layered search is implemented, first performing a
rough search with 40 evenly-spaced profiles. Then, a range
of ± 2.2nm

40 = ±0.055 nm is searched at pm precision on both
sides of the best profile of the rough search. This reduces the
2200 fits to 40 + 2·0.055nm

1pm = 150 fits, which is a much more
manageable amount.

Our layered search procedure assumes that the 40 roughly
selected profiles are representative of their respective ranges.
However, if even more layers are performed before the
picometer-resolution layer, or if a layer is too rough, this
search algorithm risks completely missing the globally best
profile. The full extent to which the total number of fits
can be reliably reduced without incurring such “misses” is
further discussed in Section VII, where various search layer
arrangements are examined. For now, we note that a 40-
profile rough layer followed by a picometer-resolution layer is
found to reduce computational time to a reasonable level (for
available simulation hardware) and never incur such misses.

II. Other Simplifications and Assumptions

Profiles can contain intensity information on all 80 bins of
the spectrometer. However, comparing all of these bins to
a given data spectrum would not be practical for several
reasons. An individual peak in the spectrum, as seen in

Figure 2, occupies a width on the order of 1.5 nm; with bin
widths of approximately 0.5 nm, this translates to 3-4 bins
depending on alignment. Comparisons between bins far away
from the peak of a distribution would only add noise to the
fit. We hence limit the comparison of profiles against data
spectra to very few bins centered around the peak bin of the
profile. In this simulation, we compare seven bins, aligning
the fourth to the profile maximum. This should safely cover
the peak in our spectrometer data. We do not worry about
noise from bins far from the center as our spectrometer data
in this article is expected to be less noisy than in practice.
The effects of changing profile width are further discussed in
Section VII. Omission of most of the 80 bins per profile also
eliminates the need to store this information on a dedicated
computing device, which may have limits in (for example) flash
storage space. Note that, although bins are being omitted,
the identities of the bins are still stored since the widths of
the bins vary significantly; thus, a comparison should avoid
misaligning bins (e.g. fitting profile bin 54 to data bin 56).

To further reduce the number of necessary computations, it
is noted that a given profile’s precomputed Bragg wavelength
rarely falls outside the profile’s highest intensity bin; in fact,
the case where λB is outside this bin is never observed in
any of the profiles used in this simulation. We can hence
make the assumption that if a spectrum’s peak bin does not
match a profile’s peak bin, then the profile cannot match the
spectrum’s Bragg wavelength within one bin width (which is
∼ 0.4 nm, much larger than the precision we desire). Accord-
ingly, we add an additional condition to our search procedure
to check if the peak bins of a data spectrum and a given
profile match; if this is not the case, we ignore the profile
completely. This comparison is easy to perform as the peak
bin of the profile is always the center bin, and the peak pin of
the data spectrum only needs to be computed once (namely,
before the search begins). In simulation, this simplification is
found to significantly increase performance, as occasionally
up to a third of profiles can be skipped. However, in practice
(or with other spectrometers or data), this does incur the risk
that all profiles in a given rough search fail the peak-matching
test and are skipped; in such a case, no information about the
position of λB can be gathered. This is not observed in the
simulation performed here, but in the investigation in Section
VII, it is shown that sufficiently rough searches encounter this
problem.

III. Fitting via Inner Products

The number of profiles that need to be fitted is reduced as
much as possible via layered searching and peak matching.
After this initial culling procedure, we use a fitting algorithm
that accounts for the fact that collected data from the spec-
trometer (which is in arbitrary units) may not be of the same
magnitude as profile data (which is in integrated power units).
A χ2 algorithm is not suitable for this purpose, as the dif-
ference in shape of the distributions is the point of interest,
rather than deviations solely dependent on the magnitude of
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(a) Clear progression of profile shape with wavelength offset.
Note that all profiles shown in this figure except for the best
profile would be ignored due to the peak-matching constraint.

(b) Small changes in profile wavelength offsets produce fluctua-
tions in bin values with a less clear progression. However,
inner product comparison is still effective.

Figure 10: Data spectrum, best profile, and surrounding profiles
for FBG 8. Profiles were generated with a reference
temperature of 25.0◦C and are used to fit a data spec-
trum measured at 20◦C.

the bins. In initial testing, it was found that a χ2 algorithm
failed to even match simulated spectra (i.e. spectra generated
using the same technique as the profiles), yielding results that
were a few picometers off.

Instead, we use an inner product fitting algorithm. To
begin, we normalize each of the profiles such that its inner
product with itself, over the bins that it contains, is one. We
do the same for the data spectrum before running our fitting
procedure. This normalization allows us to use the inner
product of the data spectrum with a profile as our “quality
factor.” Denoting the data spectrum bin vector with D and
the profile bin vector with P(tref, λ), we let:

D′ =
D√
D ·D

; P′ =
P√
P ·P

to normalize. This normalization can be performed before
the search procedure. Then we maximize the quality factor:

λbest = arg maxλ (D′ ·P′(λ))

so that λbest is the best wavelength offset. If the profile were
exactly the same as the data spectrum, this inner product
would yield a maximum value of one. Any deviation in shape
would yield a lower inner product.

This quality factor prioritizes shape in the fit and effectively
deals with magnitude differences. Moreover, it is not very
computationally intensive, as it requires a single inner product
normalization on the data (which can be performed before
the search procedure) and as many multiplications as there
are bins to compare per profile. Finally, it is flexible to any
number of bins per profile, provided that they all have the
same number.
This fitting procedure was implemented in a series of

Python scripts and executed. In Figure 10, we see an ex-
ample of the described procedure, showing several profiles
generated at different offsets as well as the best profile as
found by the inner product. This figure was constructed in
reference to spectrometer data collected at 20◦C. The per-
formance of this procedure with regards to extracting useful
data from an FBG is discussed in the following section.

VI. Profile Fit Results

Our search algorithm takes a data spectrum with unknown
temperature or strain and returns the spectrum’s λB shift
relative to a reference λB (technically, an actual wavelength
is returned, but it is measured with respect to a Gaussian
fit and hence is not as physically useful as the offset). From
this offset parameter, we must still extract information on
temperature or strain in real time in order to ascertain useful
data.

In our analysis, focusing solely on temperature, this requires
the preliminary construction of a linear fit of ∆λ vs ∆T using
spectrometer data collected at known temperatures. Thus,
we compute offsets for data spectra with temperatures in the
range of 10.0◦C to 50.0◦C in intervals of 0.1◦C.
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I. Correlating Bragg wavelength and
Temperature

Since we are only interested in Bragg wavelength offsets rela-
tive to a reference λB, we display it as a delta to the λB of
the OSA spectrum used to generate the profiles. We refer
to the difference in λB of a given data spectrum to that of
the OSA spectrum as ∆λ. Similarly, we subtract the the
OSA spectrum’s reference temperature from the measured
temperature and refer to this variable as ∆T .

After obtaining data on ∆T vs ∆λ for the entire tempera-
ture range, we perform polynomial fits of linear and quadratic
order on the results, which are later used to translate ∆λ
to temperature units. The strength of our regression model
reflects the performance of our overall procedure: the effec-
tiveness of the search algorithm, the correct choice of degree
of the polynomial fit, the procedure of profile generation as
a representation of the spectrometer’s distortions, and the
actual correlation of ∆λ with the temperature variable.
A result with seven bins per profile, working with FBG 8

and profiles generated with an OSA spectrum recorded at
25◦C, is shown in Figure 11. This figure displays a ∆λ vs
∆T plot as well as difference plots for linear and quadratic
fits.

The following conclusions are drawn from the results of the
search algorithm and fits, referring to Figure 11. Figure 11a
shows that, qualitatively, our procedure yields a consistent,
linear correlation with no immediately visible jumps, dents,
or other deviations; this suggests that the algorithm we apply
is indeed a feasible technique.

The linear fit result shown in Figure 11b has two properties
of interest. First, the points are not distributed continuously
along the shape of the curve but, instead, are grouped into
lines. This can be explained by the fact that, in our algorithm,
we chose a minimum search interval of one picometer, which
groups the ∆λ component of the results into bins that are
one picometer wide. As for the sloped lines in the figure,
these result from computing a difference plot by subtracting a
linear prediction from our points in Figure 11a. As a second
point of interest, a quadratic systematic pattern is clearly
visible with residual magnitudes on the order of 5-6 pm.

Figure 11c shows that a quadratic fit describes the correla-
tion between ∆λ and ∆T to a high degree of precision, and
additionally demonstrates that no higher-order polynomial
components are evident in the correlation at this level of
noise. Again, we see that the points are distributed in groups,
this time in parabolic shapes that result from subtracting a
second-degree polynomial.

The fact that we don’t have completely linear behavior in an
FBG is unsurprising, as the theory predicted slightly nonlinear
behavior for ∆λ vs ∆T at high temperatures. However, we
do not make use of the more accurate quadratic fit because
constraints on available hardware make a linear fit easier
to implement. Since the quadratic component is minimal
compared to the linear and constant components of the fit,
the amount of accuracy lost is worth the gain in computational

(a) Qualitatively very linear correlation of ∆λ with ∆T .

(b) Linear fit residuals with a slightly quadratic pattern.

(c) Small, non-systematic residuals for a quadratic fit.

Figure 11: Results and fits of ∆λ vs ∆T from applying the
search and fitting procedure on FBG 8 at reference
temperature 25◦C.
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σres (K) 15◦C 25◦C 45◦C σσ (K)
FBG 1 1.3375 1.3556 1.3613 0.0101
FBG 3 0.4359 0.4215 0.4150 0.0087
FBG 5 0.2493 0.2471 0.2338 0.0069
FBG 8 0.1016 0.1001 0.1017 0.0007

Table 1: Table of standard deviations of residuals for all FBGs
at all reference temperatures, as well as the standard
deviations of σres over reference temperatures. Observe
the very small variation in quality for different reference
temperatures.

speed and simplicity. Furthermore, as we will see in analyses
of other FBGs, even a quadratic fit sometimes fails to account
for an FBG’s nonlinearity (which can sometimes be very
severe).

II. Algorithm Performance at Different
Reference Temperatures

We use the linear fit parameters to transform the ∆λ axis to a
∆Tmeas axis (where ∆Tmeas ≡ Computed ∆T −Actual ∆T ).
Linear fit parameters generated in a similar fashion (i.e. by
fitting the ∆λ vs ∆T results of a large number of data spectra
with known temperatures) can be regarded as a calibration
procedure for this algorithm; this procedure will also be useful
in a final implementation.

Spectrometer data was collected for our four FBGs for the
temperatures 10.0◦C to 50.0◦C in intervals of 0.1◦C as before.
For each FBG, high-resolution OSA spectra were generated at
“reference” temperatures of 15◦C, 25◦C, and 45◦C, and these
were used to generate profiles. Linear fits were applied to
convert ∆λ to ∆Tmeas , and difference plots were computed
to show the quality of the linear fit and the behavior of each
FBG.
First, we compare changes in algorithm performance for

different reference temperatures. Table 1 shows the changes
in standard deviations of residuals for different FBGs and
reference temperatures. Figure 12 shows the difference plots
of FBG 5 for different reference temperatures.
As we can clearly see, the reference temperature makes

very little difference in algorithm performance according to
standard deviation. Furthermore, we observe no correlation
between the size of residuals and their closeness to ∆T = 0
(on the horizontal axis). This means that the shapes of the
high-resolution OSA spectra, exemplified in Figure 2, do not
change significantly in shape with temperature; instead, these
spectra mostly just shift in the wavelength domain. This is
convenient as it means that we can reliably perform this entire
procedure at only a single reference temperature. Otherwise,
it would have been necessary to coalesce profiles generated
at different reference temperatures for different intervals of
temperature in order to maximize procedure performance. For
the rest of the analysis, we hence only generate profiles with
the OSA spectrum at reference temperature 25.0◦C, chosen

(a) Residuals have standard deviation σres = 0.2493 K.

(b) Residuals have standard deviation σres = 0.2471 K.

(c) Residuals have standard deviation σres = 0.2338 K.

Figure 12: ∆Tmeas vs ∆T , computed for FBG 5 at all three
reference temperatures. Observe the minimal changes
in shape. Color markers added for residuals of magni-
tude <0.5 K, <0.1 K, <0.05 K and <0.01 K. These
markings are present in later figures.
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arbitrarily because it is most central in our temperature range
of interest.

III. Algorithm Performance for Different FBGs

Figure 13 shows the performance of our algorithm over the four
different FBGs in our test procedure. We display standard
deviations of the residuals again in Table 2, along with the
slope of the linear fit with a 95% confidence interval.
We observe that FBG 1 behaves very nonlinearly, while

other FBGs also show behaviors that deviate from a linear
behavior. However, high-quality fitting with residuals within
∼ 0.1K is observed for FBG 8. At this level of precision,
the error can largely be attributed to our TEC’s tempera-
ture control accuracy of 0.1 ◦C as mentioned in Section IV,
Subsection II.
The failure of some FBGs to correlate linearly with tem-

perature may not necessarily result from a flawed search
algorithm. These difficulties are most likely consequences of
the FBGs’ manufacturing process, and could be eliminated
with (for instance) a higher-order polynomial fit. We do not
believe that the strange shape of the ∆Tmeas vs ∆T graphs
of some FBGs is a consequence of the search algorithm; to the
contrary, it is possible that the search algorithm gives an accu-
rate measurement of the FBGs’ nonlinearity. This postulate
is somewhat supported by the fact that other well-performing
algorithms, such as the LPO technique, yield similar shapes in
∆Tmeas vs ∆T for the FBGs examined, as further explored
in Section VIII.

VII. Varying Profile Widths and Layered
Searches

The parameters for the brute-force algorithm discussed in this
article are:

For generating profiles:
• High-resolution FBG-specific measurements
• Measurements on the spectrometer

For fitting profiles:
• Number of profile bins to compare (profile width)
• Arrangement of search layers

For calibrating linear fits:
• Measured spectra at known temperatures over the range

of interest

The majority of these parameters are equipment-specific
measurements, and the performance of our procedure will be
dependent on their accuracy. This is an important difference
between our algorithm and those discussed in Section VIII.
However, the two parameters related to profile fitting are

not measurements, even though the best choice for each
variable depends on our FBGs and spectrometer. This section
explores the consequences of varying these parameters on
overall procedure performance.

I. Varying Profile Width

As discussed earlier in Section V, Subsection II, we expect
peaks in FBG spectra to occupy ∼ 1.5 nm in wavelength space,
which – with a bin width of ∼ 0.5 nm – yields 3-4 bins per
peak. However, to ensure minimal data loss, we chose to fit
seven bins centered about the maximum of the spectrometer
data. This extension to seven bins was acceptable in our
simulation since our data was averaged over several seconds
and hence contained little noise. In practice, bins outside the
peaks are expected to be more noisy, and thus their inclusion
in fits should be avoided. On the other hand, if we choose
too few bins, they may not contain enough information to
accurately determine the correct profile.

We perform our search algorithm on all FBGs with varying
profile widths, with results shown in Table 3. We choose
odd numbers of bins and generate profiles such that the bin
containing the spectrometer maximum is at the center. As we
can see, there is minimal performance variation over different
profile widths.

σres (K) 7 bins 5 bins 3 bins σσ

FBG 1 1.3556 1.3551 1.3538 0.0008
FBG 3 0.4215 0.4200 0.4186 0.0012
FBG 5 0.2471 0.2546 0.2457 0.0039
FBG 8 0.1001 0.1005 0.1009 0.0003

95% (± K
nm ) 7 bins 5 bins 3 bins σ95%

FBG 1 0.8686 0.8683 0.8668 0.0008
FBG 3 0.7336 0.7314 0.7338 0.0011
FBG 5 0.2234 0.2303 0.2236 0.0032
FBG 8 0.0284 0.0286 0.0286 0.0001

Table 3: Table of standard deviations of residuals as well as a
table of the half-width of the 95% confidence interval for
the linear fit’s slope parameter. These tables cover all
four FBGs and three different profile widths.

Two conclusions can be drawn from this consistency in per-
formance. First, the central bins contain enough information
to reliably fit profiles most of the time, meaning that we can
confidently reduce the profile width to three bins. Second,
since large profile widths perform as well as small profile
widths, we can confirm our hypothesis that our simulation
data is relatively low-noise. This is true since comparisons
with more bins will fit bins outside of the peak region, which
– due to their low magnitude in spectrometer output – will be
more influenced by noise. To be safe, we recommend using
as few bins as possible, because actual data (collected in real
time) will be more noisy than the data used in this simulation.
Thus, for the remainder of this analysis, we use three bins for
profile comparisons. As mentioned earlier, this also decreases
profile storage space and reduces computation time, since
fewer bins need to be stored and compared.

Despite minimal variation in the quantitative performance
variables of σres and the slope parameter’s confidence interval,
reducing the number of compared bins does produce misses in
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(a) Residuals have standard deviation σres = 1.3556 K. (b) Residuals have standard deviation σres = 0.4215 K.

(c) Residuals have standard deviation σres = 0.2471 K. (d) Residuals have standard deviation σres = 0.1001 K.

Figure 13: ∆Tmeas vs ∆T , computed for all FBGs at reference temperature 25◦C.

σres (K) slope (K/nm) 95% conf.
FBG 1 1.3556 74.95 ±0.87
FBG 3 0.4215 204.89 ±0.73
FBG 5 0.2471 106.46 ±0.22
FBG 8 0.1001 33.45 ±0.03

Table 2: Table of standard deviations of residuals, as well as slope of linear fit with 95% confidence interval, for all FBGs.
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(a) FBG 1 shows some misses around the center that do not
occur for comparisons with fewer bins (see Figure 13a).

(b) FBG 8 shows some misses and a small change in shape
(see Figure 13d). This new shape may not be incorrect
since noise may affect comparisons with more bins.

Figure 14: ∆Tmeas vs ∆T for FBGs 1 and 8 with a profile width
of three bins.

our search algorithm. Figure 14 gives examples of FBGs with
misses in their ∆Tmeas vs ∆T difference plots. However,
these are regarded as insignificant since they are very few in
number, especially in comparison to the misses that might
occur due to extra noise when comparing more bins.

II. Performing Layered Searches

Until now, a layered search over the entire profile range was
performed with an initial rough search of 40 profiles, followed
by a picometer-resolution layer centered on the best profile of
the rough search. Using this technique, the upper bound of
2200 profile comparisons was reduced to only 150 comparisons.

Performing multiple layers of rough searches before a high-
resolution search, or varying the size of the rough searches,
could decrease the number of necessary comparisons even fur-
ther. However, performing too rough of a search may cause
the search to miss the overall best profile. It is therefore nec-
essary to find a balance between performance and reliability.
Note that, as the effectiveness of a layer arrangement depends
on the FBG, spectrometer, and temperature range in ques-
tion, it is likely that the numbers determined in this section
may not be applicable to an application of this algorithm
to different devices. The technique used to determine the
optimal arrangement, however, can be useful for other setups.

In order to establish a notation for the order of search layers,
we will denote a search via a list of layer sizes surrounded by
parentheses. Additionally, a layer size of “p” implies picometer-
level precision. Thus, the search layers used so far would be
denoted by (40, p). Furthermore, we apply a shorthand for
successive layers of the same size using multiplicative notation.
For example, an algorithm with a layer of 30 comparisons,
followed by three layers each with five comparisons, followed
by a picometer-level layer would be denoted by (30, 3×5, p).
Occasionally, the expanded (30, 5, 5, 5, p) representation is
chosen for readability.

The total number of comparisons is the sum of the number
of comparisons over all layers; we intend to minimize this
quantity. Moreover, we require search precision on the pi-
cometer level, i.e. over 2200 profiles, so the product of the
number of comparisons per layer must be approximately equal
to 2200.
The search algorithm that minimizes the sum of compar-

isons is a binary search, which in our case would be (11×2,
p). However, this cannot be applied for two reasons: First, a
binary search works best if the qualities of the profiles were
mostly sorted, which is very much not the case. In reality,
we observe patterns like the one shown in Figure 15. The
fact that some profiles are skipped due to peak-matching,
combined with the fact that the entire algorithm fails if all
profiles in a certain layer are skipped, will cause such a binary
search to not only produce erroneous results but also (possi-
bly) produce no result at all. Secondly, and more importantly,
we noted in Section V, Subsection I, that we choose a range
of ±w/n around the best profile of a layer for the next search,
where w is the previous search width and n is the size of
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Figure 15: Profile qualities as a function of λB offset for (p)
search on FBG 8 with data spectra at specified tem-
peratures.

the next layer. This implies that the search width becomes
w2 = w/(n/2); with a binary search (where n = 2), the search
width would not decrease and the overall algorithm would
not converge on a range at all.
For this reason, the product of the layer sizes does not

represent the precision of the search algorithm. Instead, it is
the product of each of the layer sizes divided by two. As an
example, for (4, 6, 4), the search precision is (4/2) · (6/2) ·
(4/2) = 12.

To assess the performance of a given search layer arrange-
ment, we count the total number of fitted profiles f and
skipped profiles s. We compute the average of these values
over all temperatures and all FBGs. To create an overall per-
formance factor, we note that skipping a profile requires just
a single comparison of the profile center to the data spectrum
center, whereas the fit requires this same comparison as well
as one multiplication and one sum per bin (to compute the
inner product) and one comparison to check for improvement
in the quality factor. Thus, for a profile width of three bins,
the ratio of computation cost for skips to fits is 1:7, where the
seven comes from the fact that a fit requires two comparisons,
three multiplications, and two sums. Hence, the overall “score”
r for a search is given by:

r = s+ 7f

In order to find the algorithm with as many small layers
as possible without missing the best profile, we compute the
overall best profile beforehand using a (p) search. We can then
use the following algorithm to find the best layer arrangement:

1. Set a lower bound on layer size, which we will call nl.

2. Attempt to perform a layered search of (nl, p), and
cross-check the results of the search with the previously
computed offsets (from the (p) search).

3. If the search fails to identify the best profile, or stops
because all profiles in a layer are skipped, increment the

first search to (nl + 1, p) and try again. Continue to
increment until the search succeeds at (nl + k, p).

4. Append another layer just before the picometer-precision
layer of size nl, i.e. search with (nl + k, nl, p).

5. Increment the penultimate search layer until the search
succeeds.

6. Repeat steps four and five until the search precision
before the picometer-resolution layer exceeds 2200.

7. Of all layer arrangements iterated, choose the one with
the lowest score r.

We perform this check for several values of nl, since – al-
though the smallest possible value nl = 3 might appear to
be optimal – the actual performance of the search is also
dependent on the skip-to-fit ratio and the increments made
to the layers by the algorithm above to ensure accuracy. We
test values of nl ∈ [3, 12] and show our results in Table 4.

nl Resulting search f s r

3 (6, 9×3, 5, p) 37.40 8.06 269.88
4 (6, 4×4, 12, p) 33.54 7.92 242.69
5 (6, 4×5, 6, 5, 5, p) 31.65 7.81 229.63
6 (6, 6, 6, 6, 9, p) 32.07 8.31 232.93
7 (7, 7, 7, 8, 7, p) 30.53 8.93 222.68
8 (8, 8, 8, 9, p) 31.17 9.30 226.77
9 (9, 9, 9, 9, p) 31.25 10.22 228.98
10 (10, 10, 14, p) 36.29 11.16 265.21
11 (11, 11, 12, p) 36.63 10.83 267.22
12 (12, 12, 14, p) 35.09 12.36 258.03
- (40, p) 113.61 36.47 831.74
- (p) 400.27 1800.73 4602.61

Table 4: Performance of layered searches with various values of
nl, averaged over all temperatures and all FBGs. All
of these searches reach the same accuracy as (p). The
searches (p) and (40, p) are shown for reference.

We see that the best search arrangement is (7, 7, 7, 8, 7,
p), which has an r value that is 26.8% of the (40, p) search
arrangement’s r value – a 273.3% improvement.
There are a few points of interest to note about this pro-

cedure. First, note that reducing the search layers to the
bare minimum risks incorrectly identifying the best profile
or causing other overall failures in our procedure. Further-
more, it is recommended to run the analysis performed in
this section with data that represents the final measurement
setup. In our case, the result we achieve might not be useful
for our final setup since this algorithm will be applied to
data more noisy than the data in this analysis. Lastly, since
implementation of these searches on an FPGA chip is highly
parallelizable, it is feasible to adjust the layered search to
contain fewer layers, with each layer containing at most the
number of fits a chip can perform simultaneously. Note that
the computational cost score r in this section is an assessment
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of sequential computation time and hence does not correlate
with parallelizable computation time. In such a scenario, the
optimal layer arrangement can be found by performing the
algorithm used above with a value of nl close to the maximum
parallelizable number of fits, while adjusting the score r for
parallel execution.

VIII. Comparisons Against Other SDAs

In order to assess our algorithm’s precision and speed, we
must compare it against various existing subpixel detection
algorithms (SDAs). As before, we apply these algorithms
on previously collected spectrometer data (measured at a
known temperature) and determine a Bragg wavelength offset.
This allows us to find a linear model for ∆T as a function
of ∆λ for a given FBG, from which we can later determine
temperatures with real-time spectrometer data. We then
compare the difference plots, residual standard deviations (in
K), and (in some cases) the fit parameter 95% confidence
intervals for each algorithm’s regression model against the
results obtained in Section VI.

Furthermore, to get a relative idea of our algorithm’s speed,
we compare the number and kind of operations required by
each algorithm for a single Bragg wavelength (or wavelength
offset) determination. By comparing computation costs, we
get a sense of how fast our algorithm will run when imple-
mented on an FPGA.
The contents of subsections I through V are organized as

follows. We begin by devoting a subsection to each algorithm
(i.e. the Gauss fit, Kaiser fit, CDA, and LPO4 FIR technique).
In these subsections, we describe the theory behind each SDA
and produce difference plots in a similar fashion to Figure 12;
these can be used to compare accuracy and residual patterns
against those of our algorithm. A summary of performances
is given at the end in Table 6. Finally, in subsection V, we
produce a summary table that compares the number (and
kind) of arithmetic operations required for a Bragg wavelength
(or offset) determination for each algorithm explored in this
paper.
For convenience, we only look at data produced by FBGs

5 and 8; as described in Section VI, these FBGs produce
strongly linear plots for ∆λ vs ∆T with low temperature
residuals when our algorithm is applied, while FBGs 1 and 3
are known to be highly non-linear. Moreover, whenever our
profile-fitting algorithm is mentioned for speed and accuracy
comparisons in the following subsections, it is to be assumed
that we use a reference temperature of 25◦C and a profile
width of three spectrometer bins. As described in Sections
VI and VII, the choice of reference temperature is arbitrary,
and three spectrometer bins ought to be sufficiently accurate.
In addition, we use a layered search of (7, 7, 7, 8, 7, p), which
was found to require the fewest operations in Section VII,
subsection II.
Finally, it is important to note that, since all four SDAs

require some notion of wavelengths that are tied to the ac-

tual spectrometer bin data, we use the centers of the bin
boundaries (described in Section III) for this purpose.

I. Gauss Fit

Initially, the reflectivity spectra of FBGs were assumed to
be Gaussian in shape due to apodizations in the data caused
by lower laser coherence lengths; these apodizations resulted
in decreased fringe contrast, making it difficult to identify
sidelobes. In cases where the characteristic Kaiser peak of
the FBG spectrum is significantly more noticeable than its
sidelobes, it is still somewhat true that the observed peak
approximately fits a Gaussian profile.

In our case, we are concerned with a three-bin Gaussian fit,
which we will center around λp – the central wavelength of the
bin Bp containing the peak power value in our spectrometer
data. As mentioned in [1], if we let R(B) represent the
reflectivity of the spectrometer data as a function of bin
number, we have the following sub-channel estimate Bs for
the Bragg wavelength with a Gaussian fit:

Bs = Bp +
1

2

(
ln(R(Bp − 1))− ln(R(Bp + 1))

ln(R(Bp − 1))− 2 ln(R(Bp)) + ln(R(Bp + 1))

)
(11)

In order to actually convert this sub-channel estimate into a
wavelength, we make use of the bin boundary data presented
in Section III and interpolate as necessary. We are then able
to compare the results of this Gaussian fitting procedure with
our own algorithm on FBGs 5 and 8 in Figure 16, using three
bins of spectrometer data as inputs in both cases.

For both FBGs, we see that our profile generation algorithm
outperforms the Gaussian fit in terms of both its residuals
and standard deviations. In Figures 16b and 16d, we clearly
see oscillatory patterns in the Gaussian fit’s residuals; these
patterns do not match the theoretical prediction of a system-
atic quadratic trend in the difference plot. On the other hand,
our profile generation procedure does produce the expected
U-shaped plot.

The reasons behind these oscillatory patterns can be easily
explained by understanding how the spectrometer collects
data. If we had achieved a perfectly linear fit with the Gaus-
sian approximation, this would mean that the spectrometer
data is best fit by a “traveling” Gaussian that moves a fixed
distance in the wavelength domain for a given change in tem-
perature. However, even though this might be approximately
the case for the high-resolution OSA spectrum of an FBG, it
is important to note that the spectrometer does not work in
the same way as an OSA. After all, both the sweep factors
and SLED optical density variations described in Section III
end up biasing the spectrometer data in a way that cannot
easily be predicted by a simple, evenly-shifting Gaussian fit.
The end result is that the Gaussian function sometimes jumps
too far ahead in λB for a given ∆T , and – to “correct” for
changes in the bias – later jumps less far ahead in λB for the
same ∆T . This would explain the volatilities in dλ

dT that are
suggested by the linear regression’s residual plots in Figures
16b and 16d.
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(a) Profile-fitting method with FBG 5 (σ = 0.2457 K). (b) Gauss-fitting method with FBG 5 (σ = 0.3835 K).

(c) Profile-fitting method with FBG 8 (σ = 0.1009 K). (d) Gauss-fitting method with FBG 8 (σ = 0.3942 K).

Figure 16: Comparisons between our profile-generation fitting method (orange) and Gaussian fitting method (green) for FBGs 5 and 8.
The shades of green are used to demarcate temperature residuals in a similar manner to the color markers of Figure 12.

In addition, it is worth noting that we see more oscillations
in the residual plot for FBG 8 than we do in the plot for
FBG 5. This can also be explained by considering the slopes
for ∆λ vs. ∆T for these FBGs, which are the reciprocals
for the slopes we found in Table 2 with our profile-fitting
algorithm. Since FBG 5 has a best-fit slope of 9.39 pm

K while
FBG 8 has a best-fit slope of 29.90 pm

K , we see that the
spectrum for FBG 8 will shift more rapidly in λB over the
same temperature range. This means that the spectrometer
data for FBG 8 will cover more bins than will the data for
FBG 5. Since transitions between bins result in significant
changes in the sweep factor (see Figure 5) and some changes
in the SLED spectrum (see Figure 6), we would expect to

see more instances of spectrometer bias affect the underlying
Gaussian-like reflectivity curve for FBG 8. This is in exact
agreement with what we observe.
Beyond the residual plot, our algorithm’s standard devia-

tions in Figure 16 consistently surpass those of the Gaussian
fit, especially in the case of FBG 8 (which, based on all pre-
vious investigations, seems to most clearly follow a linear
response to temperature). In summary, then, we see a major
improvement when we use our profile-generating algorithm
over the Gaussian fit.
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II. Kaiser Fit

The Kaiser window is a discrete tapering sequence that is
used often in digital signal processing; in appearance, it can
often look similar to a Gaussian curve, albeit being very
differently defined. To further elaborate on this sequence,
we first suppose that M points are desired for the output
window, and let n be an integer index for these points such
that −M−1

2 ≤ n ≤ M−1
2 . In this case, the Kaiser window

over the M points is defined by:

K(n) =
I0

(
β
√

1− 4n2

(M−1)2

)
I0(β)

(12)

Where I0 is the zeroth order modified Bessel function of
the first kind and β is a parameter that affects the shape of
the window (a higher β corresponding to a narrower shape)
and the sidelobe attenuation of the Fourier transform of the
window.

Investigations with FBGs have shown that a Kaiser peak
more precisely models the real spectrum of FBGs that do
not possess a sidelobe characteristic; this was observed to
be the case since FBG spectra exhibit a shorter decay factor
compared to the Gaussian shape [1]. While Kaiser windows
are far too computationally expensive for FPGAs due to the
presence of the modified Bessel function of the first kind
(which, in its analytical expression, involves an infinite sum
and the Γ function), we analyze them in this section to see
how effective they are compared to the Gaussian fit.
Given the discrete nature of the Kaiser window, however,

it is not as straightforward to “fit” a Kaiser peak to three
points as it is to fit a continuous Gaussian curve. In order to
circumvent this restriction, we use the following procedure:

1. As inputs from the spectrometer, we take a set of wave-
lengths λ corresponding to the centers of the bins of
interest and a set P containing the power measurements
of these bins.

2. To simulate continuity, we define a function that takes
a parameter β and returns a 0.1-pm-resolution Kaiser
window with M points.

• This parameter M is a constant and is sufficiently
large to cover our domain λ (and an extra padding
region of 2.5 nm on either side for offsets) with a
0.1-pm resolution.

3. We then parametrize each Kaiser window with three in-
puts: a multiplicative amplitude A, the abovementioned
parameter β, and an offset parameter ∆. We can gen-
erate these windows by taking the window from step 2,
applying the offset ∆, and multiplying all points by A.

• When ∆ = 0, the Kaiser peak is assumed to be
centered in the middle of our wavelength domain λ.
A positive ∆ (by arbitrary convention) represents a
leftwards shift of the Kaiser window.

Figure 18: λ vs T plot for Kaiser-fitting method on FBG 8 over a
temperature range of [10.0◦C, 50.0◦C]. We can clearly
see jump discontinuities around T ≈ 28◦C and T ≈
41◦C.

• The offset (measured in nm) can thus be used to
determine the Bragg wavelength with a 0.1-pm res-
olution.

4. Lastly, we make use of SciPy’s “curve_fit” function (a
least-squares procedure that works with multiple vari-
ables) to fit a window from step 3 to our spectrometer
data from step 1. The parameter ∆ of the best-fit window
can be used to determine the Bragg wavelength.

We compare the results of this Kaiser fitting procedure
with our own algorithm on FBGs 5 and 8 in Figure 17, us-
ing three bins of spectrometer data as inputs in both cases.
For both FBGs, we see that our profile generation algorithm
performs significantly better in terms of both its residuals
and its standard deviations. In the case of FBG 5, we see an
oscillatory pattern in the Kaiser fit’s residuals, which most
likely results from spectrometer bias as explained above; this
does not match the theoretical prediction of a systematic
quadratic pattern. On the other hand, our profile-matching
procedure does produce the expected U-shaped plot. Further-
more, our algorithm’s standard deviation of σ = 0.2457 K
significantly outperforms the Kaiser fit’s standard deviation
of σ = 0.7290 K.
As for the FBG 8 data, our profile generation algorithm

clearly demonstrates a more well-behaved residual plot and
a lower standard deviation. However, we do observe some
interesting patterns in Figure 17d that are worth noting. We
can see from this figure that the Kaiser window fit seems to
do a relatively good job for temperatures lower than 28◦C;
yet over the remainder of the temperature range, our fit
yields very inaccurate results. These inaccuracies cannot be
explained by the number of bins that are used for the Kaiser

18



(a) Profile-fitting method with FBG 5 (σ = 0.2457 K). (b) Kaiser-fitting method with FBG 5 (σ = 0.7290 K).

(c) Profile-fitting method with FBG 8 (σ = 0.1009 K). (d) Kaiser-fitting method with FBG 8 (σ = 0.8842 K).

Figure 17: Comparisons between our profile-generation fitting method (orange) and the Kaiser fitting method (blue) for FBGs 5 and 8.

fit; an increase to five bins for the Kaiser fit yielded an even
more oscillatory residual plot with a higher standard deviation
of σ = 1.0745 K.

In order to explain these jumps in Figure 17d, we closely
inspected the λ vs. T plot for the FBG 8 Kaiser fit, shown
in Figure 18. We found that the plot was divided into three
somewhat linear sections with discontinuities at T ≈ 28◦C
and T ≈ 41◦C; these correspond exactly to the jumps that we
see in the residuals. By looking at the actual Kaiser windows
generated around these temperatures, we found that these
discontinuities occur at points in the spectrometer data where
two neighboring bins have relatively high and similar values.
At these “double-peaked” points in the data, the least-squares

fitting algorithm understandably makes a jump from a Kaiser
window centered around the left peak to one centered around
the right peak. This is a particularly noticeable issue with the
Kaiser fit since the parameter β allows for a wide variety of
different-looking Kaiser windows to be generated; for instance,
β = 0 gives a completely rectangular Kaiser window, while
large values of β give a nearly Gaussian curve.

With the clear systematic patterns that we observe in the
Kaiser fit, as well as the high standard deviations and jump
discontinuities, one might wonder why the Kaiser window is
believed to be superior to the Gaussian fit. However, there
are certain cases where the Kaiser fit can do a better job; if
an FBG has a noticeable Kaiser shape and relatively dimin-
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(a) Gaussian-fitting method with FBG 8 (σ = 0.3893 K). (b) Kaiser-fitting method with FBG 8 (σ = 0.1800 K).

Figure 19: Comparisons between the Gaussian fitting method (green) and Kaiser fitting method (blue) for FBG 8 over a temperature
range of [10.0◦C, 28.0◦C].

ished sidelobes in its OSA spectrum, it is possible that the
Gaussian fit might actually do worse over certain temperature
ranges. For example, in Figure 19, we compare the Kaiser
and Gauss difference plots for FBG 8 generated over the
temperature range [10.0◦C, 28.0◦C] (i.e. avoiding points of
major jump discontinuity). From the resulting graphs, we can
see that the Kaiser residuals do follow a somewhat regular
oscillatory pattern, similar to the pattern in the Gaussian
plot. Nonetheless, we see an improved standard deviation of
σ = 0.1800 K in the Kaiser fit, as opposed to the deviation of
σ = 0.3893 K achieved by the Gaussian algorithm over the
same temperature range.

III. CDA5 Fit

A centroid detection algorithm (CDA) is a common method of
extracting subpixel information from low-resolution data. The
method for this algorithm is a very simple weighted average
over a range of (2a+ 1) bins, where a is a positive integer. If
we define Bp as the bin containing the spectrometer’s peak
data and R(B) as the bin-wise spectrometer response, we
have the following formula for the subchannel estimate Bs:

Bs =

∑i=Bp+a
i=Bp−a i ·R(i)∑i=Bp+a
i=Bp−a R(i)

(13)

It is common to use a fitting range of five bins (i.e. the
CDA5 algorithm) to cover all bins of interest, achieve extra
accuracy, and ensure relatively low residuals. Thus, we will
follow this convention in our analysis.

In Figure 21, we compare the results of the CDA5 technique
with our own algorithm on FBGs 5 and 8, using three bins of
spectrometer data for our profile generation and five bins for

Figure 20: λ vs T plot for the CDA5 procedure on FBG 8 over a
temperature range of [10.0◦C, 50.0◦C]. We can clearly
see jump discontinuities around T ≈ 15◦C, T ≈ 28◦C,
and T ≈ 41◦C.
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(a) Profile-fitting method with FBG 5 (σ = 0.2457 K). (b) CDA5 procedure with FBG 5 (σ = 0.4640 K).

(c) Profile-fitting method with FBG 8 (σ = 0.1009 K). (d) CDA5 procedure with FBG 8 (σ = 0.4722 K).

Figure 21: Comparisons between our profile-generation fitting method (orange) and the CDA5 procedure (purple) for FBGs 5 and 8.
Note that CDA5 makes use of five bins centered around the peak bin Bp.

the CDA5 moving average. With both FBGs, we find that our
profile matching method is more successful in terms of both
its residuals and its standard deviations. In the case of FBG
5, we see an oscillatory pattern in the CDA’s residuals that is
very similar to the pattern in Figure 16b. As one would expect
from the simplistic “moving average” approach of centroid
detection, this suggests that CDA5 is heavily influenced by
spectrometer bias.
In addition, the FBG 8 data in Figure 21d clearly demon-

strates jump discontinuities in CDA5’s linear regression model.
On closer inspection (see Figure 20), we found that CDA5’s
λ vs. T plot featured four somewhat linear sections with
discontinuities at T ≈ 15◦C, T ≈ 28◦C, and T ≈ 41◦C. This

pattern is very similar to what we observed in the Kaiser
data (Figure 18), and occurs due to difficulties with applying
centroid detection on double-peaked data. Nonetheless, one
important distinction from the Kaiser plot is that the sections
in Figure 20 are qualitatively much more linear than those in
Figure 18.

Overall, in terms of both standard deviations and system-
atic residual patterns, CDA5 is surpassed by the three-point
Gaussian procedure in subsection I; this is in agreement with
the results concerning resolution gain factors in Figure 5.12
of [1]. Nevertheless, centroid algorithms have the advantage
of being far more computationally efficient than Gauss fits.
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IV. LPO4 Technique

A novel, popular approach for Bragg wavelength determina-
tion is the linear phase operator (LPO) technique described
in [1]. This method combines a finite impulse response (FIR)
filter with linear interpolation to arrive at a subpixel estimate
of the reflectivity spectrum’s peak wavelength. In this paper,
we specifically look at the LPO4 technique, which uses five
points to produce its FIR filter (the order of an LPO tech-
nique is generally given as N − 1, where N is the number
of points considered). We choose this particular technique
as it uses a low number of bins and was shown to perform
sufficiently well compared to higher-order operators [1].

To begin, we cover the theory behind the LPO technique.
As is common practice in discrete FIR theory, we first describe
an output sequence y(n) as a weighted sum of the current
and (a finite number of) previous values of the reflectivity.
If we let R(B) represent the bin-wise reflectivity data from
the spectrometer, h(i) the impulse response coefficients, and
N the number of points considered in our FIR filter, we can
define y(n) generally as:

y(n) =

N−1∑
i=0

h(i) ·R(n− i) (14)

It is a generally known result in FIR theory that a negative-
symmetry FIR filter defined over an odd number of points N
can be appropriately chosen to design a differentiator of an
input sequence (R(B) in this case). By the term “negative-
symmetry filter,” we refer to a set of impulse coefficients
h(i) such that h(n) = −h(N − 1 − n) (i.e. the coefficients
are opposite-signed symmetric about the center coefficient).
For the specific case of the LPO4 technique for FBGs, these
coefficients were found in [1] to be [1, 1, 0, −1, −1].

We also specifically choose an odd length to allow for
straightforward accounting of the group delay of our FIR
(i.e. the average delay of our filter as a function of frequency).
When we use a negatively-symmetric linear phase FIR, we
observe a constant group delay of tgr = N−1

2 samples; this
delay was found by observing the negative first derivative of
the filter’s phase response [1]. The result for tgr determined
in [1] is in accordance with linear phase response theory, and
is demonstrated in Figure 22 for LPO8. Thus, an odd length
N was required to produce an approximation y(n) to the true
derivative of any FBG spectrum with a delay of N−1

2 samples.

By determining the zero-crossing of y(n) and taking into
account the group delay of the LPO filter, we can arrive
at a subpixel estimate for the Bragg wavelength. Based on
the above reasoning, this zero-crossing has a delay of N−1

2

pixels with respect to the peak wavelength λB,pix from the
spectrometer data (this can be seen as a delay of four pixels
in Figure 22 for LPO8). Suppose, for LPO(N-1) (where N −1
represents the order), that the intensities around the zero-
crossing of y(n) are defined as ξLPO(N-1) and gLPO(N-1). We
can then approximate the slope of y(n) as:

Figure 22: LPO8 output sequence y(n) (solid line) for an FBG
spectrum (dashed line), adapted from Figure 5.7 of [1].
We can clearly see the group delay (tgr) of N−1

2
= 4

samples in this image.

m =
gLPO(N-1) − ξLPO(N-1)

pixel

This allows us to use the secant method and find the sub-
pixel zero-crossing of y(n).
For LPO(N-1) with a peak bin of Bp and a bin-wise re-

flectivity spectrum R(B), we clearly have the following for
gLPO(N-1) and ξLPO(N-1):

gLPO(N-1)(R, Bp) = y

(
Bp +

N − 1

2

)
=−R

(
Bp −

N − 1

2

)
· · · −R (Bp − 1)+

R (Bp + 1) + · · ·+R

(
Bp +

N − 1

2

) (15)

ξLPO(N-1)(R, Bp + 1) = y

(
Bp +

N − 1

2
+ 1

)
=−R

(
Bp −

N − 1

2
+ 1

)
− · · · −R (Bp)+

R (Bp + 2) · · ·+R

(
Bp +

N − 1

2
+ 1

)
(16)

By applying the secant method, we then see that a sub-
channel estimate Bs for the Bragg wavelength can be formu-
lated by:

Bs = Bp +
gLPO(N-1)(R, Bp)

gLPO(N-1)(R, Bp)− ξLPO(N-1)(R, Bp + 1)
(17)

Note that Equation (17) only applies for the condition
R(Bp − 1) < R(Bp + 1), in which case we have a group
delay of N−1

2 samples. On the other hand, for the condition
R(Bp − 1) > R(Bp + 1), we would logically have a shorter
group delay since the peak is closer to bin (Bp − 1) than it
is to bin (Bp + 1). In this case, it was found in [1] that we
simply have to decrease our group delay to N−1

2 −1 samples in
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order to accurately reflect the data; this ends up transforming
Equation (17) to:

Bs = Bp +
gLPO(N-1)(R, Bp − 1)

gLPO(N-1)(R, Bp − 1)− ξLPO(N-1)(R, Bp)
(18)

Thus, unlike the previous SDAs that have been considered,
a comparison (between R(Bp−1) and R(Bp+1)) is required in
order to implement LPO. To actually convert this sub-channel
estimate into a wavelength, we once again make use of the bin
boundary data presented in Section III and interpolate. This
then allows us to compare the results of this LPO4 technique
with our own algorithm on FBGs 5 and 8 in Figure 23. For
our own profile generation process, we make use of three
bins of spectrometer data. However, LPO4 requires five bins
in order to work at all and, due to the caveat in Equation
(18), requires at least two additional bins in order to offset
appropriately. Thus, we use seven bins of spectrometer data
to create a linear regression model for LPO4.
In spite of the fact that LPO4 uses more bins than our

profile-fitting method, we can see from Figure 23 that our
method is actually superior to LPO4 for both FBGs in terms
of both its residuals and standard deviations. On first glance
of the FBG 5 standard deviations, this is not immediately
obvious as our fitting method only slightly outperforms LPO4
in this criterion. However, the residual plots of FBG 5 make
this distinction much more clear. For example, in Figure 23a,
we see a U-shaped pattern; this indicates that a quadratic
fit might be more appropriate. While a very similar pattern
exists in Figure 23b, we can clearly see that spectrometer
bias creates additional oscillations in this U shape. These
oscillations play a large role in making our standard deviation
for FBG 5 better than that of the LPO4 technique.
As for FBG 8, we see from Figures 23c and 23d that our

profile-fitting algorithm’s standard deviation surpasses LPO4
by a factor of ∼ 1.9. This large improvement in accuracy
results from the fact that FBG 8 covers a large λ range
for the same temperature range of [10.0◦C, 50.0◦C]. Since
this translates to more bin transitions, we end up observing
more instances of spectrometer bias due to sweep factors;
this bias manifests itself in the relatively large number of
oscillations in Figure 23d. Our algorithm, on the other hand,
displays smaller oscillations since it accounts for much of
the spectrometer bias. Nonetheless, we do see some small
oscillations that are somewhat similar to Figure 23d. This
undesired systematic pattern can in fact be removed if we use
more than three bins, as we can see by comparing Figure 13d
(seven bins) with Figure 14b (three bins).

In addition, LPO4 might produce higher magnitude resid-
uals due to more inherent theoretical flaws in its approach.
The approach outlined by [1] assumed that all spectrometer
bins were evenly spaced in the wavelength domain; in such
a case, the LPO4 FIR coefficients of [1, 1, 0, −1, −1] deter-
mined by Zeh might work more ideally. However, in reality,
many modern spectrometers are manufactured with uneven
“bin widths.” Combined with the fact that the notion of a bin
boundary is not particularly well-defined, this could mean

Slope (K/nm) 95% conf.

FBG 5 LPO4 107.48 ±0.24

FBG 5 Profiles 107.16 ±0.22

FBG 8 LPO4 33.56 ±0.05

FBG 8 Profiles 33.45 ±0.03

Table 5: Slopes of linear fits (∆λ vs. ∆T ) for FBGs 5 and 8 with
95% confidence intervals, using both profile fitting and
LPO4 to produce regression models. Note that LPO4
computes across five channels of input data, while profile
matching uses three channels.

Algorithm Linear fit residuals (K)

by quality FBG 5 FBG 8

Profiles 0.2457 0.1009

LPO4 0.2675 0.1887

Gauss 0.3835 0.3942

CDA5 0.4640 0.4722

Kaiser 0.7290 0.8842

Table 6: Summary of performances of profile-fitting, Gauss and
Kaiser fitting, centroid detection, and linear phase oper-
ator algorithms.

that the FIR coefficients stated by [1] are inaccurate. Indeed,
it might be necessary to apply a spectrometer-specific process
that determines the best-fit coefficients for a first-order FIR
differentiator; such an approach would also have to impose
the constraint of negative symmetry on the resulting FIR
filter. However, even though it may be possible to arrive at
more suitable FIR coefficients, we still might see systematic
oscillations in LPO4’s residual plot as spectrometer bias is
difficult to remove.
As a further point of comparison, we examine the best-fit

slope parameter for the ∆T vs. ∆λ plots in both LPO4 and
our algorithm; 95% percent confidence intervals for these
parameters are presented in Table 5. We see that both LPO4
and our profile-fitting algorithm generate similar confidence
intervals for each FBG’s Bragg wavelength response; in fact,
in the case of FBG 5, these intervals even overlap. This helps
attest to the accuracy of our profile generation procedure.
Due to the large, noticeably systematic oscillations in LPO4’s
residuals, however, we have reason to believe that our best-fit
parameters are in fact more accurate. Finally, it is worth
noting that we arrive at a more precise estimate of the slope
when we use our profile-matching method.

In spite of its oscillatory residuals and theoretical flaws,
LPO still performs much more accurately compared to all of
the other SDAs described in this section. As we can see from
Figure 23, the LPO4 technique succeeds in producing the
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(a) Profile-fitting method with FBG 5 (σ = 0.2457 K). (b) LPO4 technique with FBG 5 (σ = 0.2675 K).

(c) Profile-fitting method with FBG 8 (σ = 0.1009 K). (d) LPO4 technique with FBG 8 (σ = 0.1887 K).

Figure 23: Comparisons between our profile-generation fitting method (orange) and the LPO4 technique (magenta) for FBGs 5 and 8.
Note that LPO4 computes across five channels.

expected systematic U shape in its residuals, and addition-
ally demonstrates relatively low standard deviations. This
suggests that the approach of finding the zero-crossing of the
differentiator y(n) results in a more robust prediction for the
peak of the FBG spectrum, less hindered by spectrometer
bias due to our sweep factors and SLED.
A summary of the fit performances of all algorithms dis-

cussed in this section is given in Table 6.

V. Computation Cost Summary

To conclude our analysis of other SDAs, we compare the
computation costs of determining a Bragg wavelength for

each algorithm presented in this paper; of course, we omit
the Kaiser fit in this comparison due to the modified Bessel
functions that it requires. For the Gauss and CDA5 algo-
rithms, the number of operations required to calculate Bs
can be easily determined by Equations (11) and (13) respec-
tively. For LPO4, on the other hand, Equation (17) can
simplify significantly due to cancellation in the denominator.
In the end, LPO4 requires one comparison, two additions
and two subtractions to determine gLPO4, an additional two
additions and one subtraction to determine the denominator
gLPO4 − ξLPO4, and lastly one division and one addition to
arrive at a subchannel estimate.
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Profiles Gauss CDA5 LPO4

61 × ADD
92 × MUL
70 × COMP

5 × LN
3 × ADD
4 × SUB
1 × DIV
3 × MUL

9 × ADD
2 × SUB
1 × DIV
6 × MUL

6 × ADD
5 × SUB
1 × DIV
1 × MUL
1 × COMP

Table 7: Comparison of the average computation costs (rounded
to the nearest integer) per Bragg wavelength (or offset)
determination for subpixel algorithms and our profile-
matching procedure. LN = natural logarithm, ADD =
addition, SUB = subtraction, MUL = multiplication,
COMP = comparison. Note that linear interpolation (in
order to determine an actual wavelength) was included
for the Gaussian, CDA5, and LPO procedures.

However, once we determine Bs, we must also apply linear
interpolation to determine the actual Bragg wavelength due to
the uneven bin boundaries. Suppose Bl is the bin immediately
to the left of the subchannel estimate Bs, and λ(B) is a
mapping that takes a bin number and returns the wavelength
at the center of that bin. Then the interpolated wavelength
is simply given by:

λB = λ(Bl) + (Bs −Bl) · (λ(Bl + 1)− λ(Bl)) (19)

This adds an extra addition, two subtractions, and a multi-
plication operation to our Gaussian, CDA5, and LPO algo-
rithms.
As for our own algorithm, we choose to use the layered

search arrangement that produces the lowest r performance
parameter (i.e. average number of operations) as defined in
Section VII, subsection II; following a brute-force determi-
nation process across all FBGs at a reference temperature
of 25◦C, this was found to be a layered search of (7, 7, 7,
8, 7, p). This search procedure achieved an optimum aver-
age combination of 8.93 profile skips and 30.53 profile fits
per Bragg wavelength offset determination. Since each pro-
file skip requires one comparison (for peak matching), while
each profile fit requires two comparisons (peak matching and
maximum quality determination), two additions, and three
multiplications (inner product), we were able to determine
an average number of operations for each λB search.

The results of our computation cost analysis are shown in
Table 7. While the values computed for our profile-fitting
algorithm are only meant to serve as order-of-magnitude
estimates (since the best layered search depends on the spec-
trometer, FBGs, OSA data, and countless other factors), we
clearly see that our algorithm is much more computationally
intensive than any of the SDAs we have examined. Moreover,
Table 7 does not take into account the fact that we must
read profile data from memory. Since these read operations
are implementation-dependent and can have variable speeds
depending on data storage choices (e.g. USB, RAM, or flash

memory), we have not included them in our table; nonetheless,
the costs of these operations cannot be neglected.
In spite of the relatively high number of comparisons our

algorithm has to perform to determine a Bragg wavelength
shift, it is important to remember that our profile-fitting
procedure can be parallelized in FPGA hardware. For exam-
ple, the floating-point inner product calculations for a given
layer can be distributed across DSP (digital signal processor)
slices in our actual implementation. In the specific case of a
Xilinx R© Virtex-5 SX95T FPGA, we have 640 DSP48E slices
available for computations. If we make use of the LogiCORE
IP Floating-Point Operator (v5.0) to perform single-precision
computations (making full usage of the DSP48E slices), we
require only two DSP48E slices per addition or multiplication
operation. Since our largest layer in (7, 7, 7, 8, 7, p) requires
at most eight simultaneous inner product calculations (and
hence 24 multiplications followed by 16 additions), we have
more than enough DSP48E slices in the SX95T FPGA to
parallelize our algorithm for an entire layer in an appropriate
manner.
In addition, while the number of operations stated in Ta-

ble 7 for our algorithm might seem very high, we are only
performing a relatively small number of trivial additions, mul-
tiplications, and comparisons. With sufficiently fast DSP
clocks and the addition of parallelization, it is conceivable
that these processes will be performed in sub-millisecond time,
which is more than sufficient for most applications. Most im-
portantly, a sub-millisecond execution time will be more than
fast enough to keep up with our spectrometer’s data output
rate of 12 sample-averaged spectra per second. However, in
order to arrive at a more precise estimate for computation
time, further research in the field of hardware implementation
will be necessary.

Lastly, the improvement in accuracy that results from our
produced regression model is a very important factor; in the
case of FBG 8, for example, our model has a standard devia-
tion of ∼ 0.1 K over a temperature range of [10.0◦C, 50.0◦C].
This will be very useful for high-precision temperature or
strain applications over a large range of input stimulus values.

IX. Summary and Future Work

Fiber Bragg gratings are a modern technology used to mea-
sure temperature and strain on a fiber-optic cable based
on changes in a Bragg wavelength parameter. These grat-
ings have applications in several fields, including non-invasive
surgery. Unfortunately, many techniques of extracting the
Bragg wavelength parameter – and hence measuring the tem-
perature or strain variables – are limited in accuracy due
to low-resolution data with distortions and irregular binning
(“spectrometer bias”).

Instead of fitting the data with no reference to spectrome-
ter properties, we apply a “brute-force” approach where we
emulate all possible spectrometer responses and store them
in precomputed “profiles” that are later fitted to spectrom-
eter output. We measure “sweep factors” representing the
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contribution of a wavelength of light to each bin over the
whole spectrum, a SLED spectrum that accounts for the light
source of our experimental setup, and a high-resolution OSA
spectrum of the FBG in question at a specific reference tem-
perature within the temperature range of interest. Profiles
are generated by offsetting the high-resolution OSA spectrum
by a given wavelength and integrating over each bin’s sweep
factor, along with the SLED spectrum, to yield a bin-by-bin
prediction for the spectrometer output for this wavelength
offset. These profiles are generated for the expected range
of wavelength variation and are then normalized and stored.
Test measurements with the spectrometer were conducted
over a temperature range of 10.0◦C to 50.0◦C and averaged
over 250 samples, resulting in lower noise than in practice.

In order to obtain wavelength offsets in real time, incoming
data spectra are normalized and compared to profiles, using
the inner product of the spectrum and profile as a “quality
factor.” This inner product is computed over three bins,
centered on the bin containing the most photocurrent, to
reduce the influence of noise in low-power bins further away
from the 2-3 bins-wide peak. The range of 2200 profiles is
searched via “search layers,” which, when optimally arranged,
can narrow down on the best profile with few computations.
Furthermore, a peak-matching constraint is applied, which
requires a given profile’s maximum-power bin to match that
of the data spectrum. Using a brute-force approach, a layered
search was determined that identified the best profile for any
given spectrum with ∼ 30 inner product comparisons and ∼ 9
profiles skipped due to peak-matching.
The wavelength offset variable is a representation of the

Bragg wavelength, and should hence be correlated with the
temperature and strain variables. Temperature correlations
were analyzed to be highly linear – in accordance with the
approximate predictions of coupled-mode theory – with linear
fit slope parameters having 95% confidence intervals ranging in
half-width from ±0.03 to ±0.87 K/nm depending on the FBG
in question. When using the linear regression parameters
to convert the wavelength offset variable to temperature,
linear fit residuals ranged from 0.1001 K to 1.3556 K, again
depending on the FBG. An accuracy of 0.1 K is within the
precision of the temperature controller used.
An analysis was conducted to compare our profile-fitting

method against the Gaussian fit, Kaiser window fit, centroid
detection algorithm (CDA), and the novel linear phase opera-
tor (LPO) technique. None of these algorithms are capable
of taking into account distortions due to the spectrometer.
Furthermore, they assume evenly-spaced binning and – in
the cases of CDA5 and LPO4 – make use of five bins rather
than just three; this implies greater susceptibility to noise
in low-power bins. A summary of performances is given in
Table 6. The profile-fitting algorithm outperforms all other
SDAs, decisively beating the Gauss, Kaiser, and CDA5 fitting
procedures. Moreover, it improves on LPO4 by up to a factor
of ∼ 2 depending on the FBG.
However, this improvement in accuracy comes with the

drawback of comparatively large computation costs as shown

in Table 7. At the same time, profile fitting is the only
algorithm to reach temperature measurement residuals on
the order of 0.1 K. In practical applications like medical
technology, a real-time implementation of this algorithm is
still plausible and reliably gives high-precision measurements
over a large range of temperatures.

In order to more thoroughly assess the performance of this
algorithm in practice, a real-time implementation should be
developed on a parallelizably-programmable device. This will
allow for further performance comparisons (e.g. of computa-
tional costs and temperature/strain accuracies) against the
SDAs discussed above.
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