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Circuit: p —- A= A— ... = A, — E Goal: estimate Tr|E A, (...45(A1(p))--.)]

IIlt I'OdU.Ct 1011 S ampllng P aUIIS input state quantum channels observable output is an unbiased estimator
We study two novel Pauli propagation algorithms to estimate Let A be any hermitian matrix. Consider the S Chrd din ger Prop a g at i on

the outcomes of quantum circuits on qubits. They support any completely dependent random variables ¢(A) and .
quantum circuit with noise, but are more efficient when the o(A) below. They are an estimator: [£(¢ -:6) = A. 1. Sample a & and ¢ for the input state p 2. For each 4, sample a & and  for A,(operator) 3. Take inner product with observable
circuit is built from Clifford gates: Hadamard, Phase, and Tr(cA)| operator = sample from &(p) . ~
CNOT. 5(A) = o with prob. ™ D) for each Pauli o > operator = sample from &(/A;(operator)) output *= Tr(operator * F)
Bennink et al. [1] give a similar algorithm called stabilizer ~ ~ output = sample from &(p) output *= sample from (A;(operator)) maximum *=max Tr(o E)
propagation, the only previously known noisy near-Clifford &(A) = sign(Tr(a4)) - D(A) maximum = D(p) maximum *= max D(A;(0)) Panlis o .
simulator for qubit circuits. Pashayan et al. (2| gave a protocol The stabilizer norm D(A) is a constant that Paulis o return output, maximum
that works for qutrit circuits using the discrete Wigner function. makes the above a PDF": H eisenber g PI- Op ag ati on Channel adjoint ATo f A satisfies Tr(A(A) - B) — Tr(A - AT(B))
All these algorithms estimate the mean of some probability D(4) = 1 Z ITr(cA) fo
distribution via many samples. Pauli propagation takes lmear ' . 1. Sample a o and ¢ for the observable E 2. For each i, sample a ¢ and ¢ for AT(operat or) 3. Take inner product with input p
time to sample, and never writes down a stabilizer state in the Paulis o A
process. The number of samples can scale exponentially. When A is a tensor product of operators, each operator = sample from 7(E) operator =sample fromo (Aj(operator)) output *= Tr(operator - p )

: : acting on a constant number of qubits, ¢ and & output = sample from c(E) output *= sample from ’c\(/l];(operator)) maximum *= 1 ( = max Tr(op))
Runtime Ana1YSIS can be sampled from efficiently. maximum = D(E) maximum *= max D( AT(O')) Paulis o
Hoetfding inequality gives a condition to achieve accuracy e Paulisc return output, maximum

with probability 1 - 0 in terms of the maximum value of the Sampling Stabilizer States

distribution: The robustness of magic R(p) gives another PI’GViOllS WOI’kZ St abﬂiZ cr PI'Op agatiOIl

% n 2 (maximum)2 estimator E(d -$) = p, via stab. states {le <0 1} R ~ from 1 to m R . .
£ 0 1. Sample a ¢ and d for the input state p 2. For each i, sample a  and d for A;(operator) 3. Take inner product with observable
tThe sa,mplin% algori’;lhn.ls O};tplztt the pr0(tiuct oi manly cos(ti — mm Z : | ql s.t. p = z q, | 90¢><907:| operator = sample frcj\m o(p) operator = sample from $(/A;(operator)) output *= Tr(operator - E)
erms, one for each input state, quantum channel, an _ ~
P 9 . g/ output =sample from d(p) output *= sample from d(A;(operator)) maximum *= max Tr(|p; ) ;| E)
observable. When the cost is > 1 the range grows exponentially. 3(p) = |p){:| an d d( ) = sign(q) R(p) w.p q; . stab. states |¢;) { ©;]
Therefore, a component is efficient when its cost is less than 1. o R(p) maximum =R (p) maximum *= max R(4;([¢;)< ¢i)) RN

stab. states |, ) { v, return output, maximum
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Stabilizer propagation can efficiently simulate input states that are mixtures of stabilizer states. We exploit channel-state duality to map two-qubit states to ", H S'Sher_\_g_erg & Helsenéa 9e ;g
it-to-qubi : - — chrodinger - 0
Schrodinger propagation can simulate larger class of hyper-octahedral states, defined by: quIF to-qubit quantum cha,r}r}els. Pauli pro.paga,tlon methods —_— 559,
consistently outperform stabilizer propagation for these N -
channels ——— Efficient for all
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Consider a channel A;, which is the unitary e¥2/2 composed

with a depolarizing channel with fidelity f. Pauli propagation This work was supported by Scott Aaronson.
simulates more of these channels. 1] quant-ph/1703.00111 2] quant-ph /1503.07525

According to the Hilbert-Schmidt measure, hyper-octahedral states are much more plentiful.

The runtime of Heisenberg propagation does not depend on the input state at all.




