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Introduction

Previous Work: Stabilizer Propagation
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Efficient Input States

We study two novel Pauli propagation algorithms to estimate 
the outcomes of quantum circuits on qubits. They support any 
quantum circuit with noise, but are more efficient when the 
circuit is built from Clifford gates:  Hadamard, Phase, and 
CNOT.

Bennink et al. [1] give a similar algorithm called stabilizer 
propagation, the only previously known noisy near-Clifford 
simulator for qubit circuits. Pashayan et al. [2] gave a protocol 
that works for qutrit circuits using the discrete Wigner function.

All these algorithms estimate the mean of some probability 
distribution via many samples. Pauli propagation takes linear 
time to sample, and never writes down a stabilizer state in the 
process. The number of samples can scale exponentially.
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Sampling Paulis

Sampling Stabilizer States

Let A be any hermitian matrix. Consider the 
completely dependent random variables c(A) and 
σ(A) below. They are an estimator: 𝔼(c ·σ) = A.

^

^ ^ ^

σ(A) = σ with prob.                     for each Pauli σ ^
|Tr(σA)|
2  · D(A)n

c(A) = sign(Tr(σA)) · D(A) ^ ^

When A is a tensor product of operators, each 
acting on a constant number of qubits, c and σ 
can be sampled from efficiently.

The stabilizer norm D(A) is a constant that 
makes the above a PDF:
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Paulis σ 

D(A) =               |Tr(σA)| S1 
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R(ρ) = min       |q | s.t. ρ =       q  |φ     φ |〉〈i iq

  〉〈

 

φ(ρ) = |φi   φi| and  d(ρ) = sign(q) R(ρ) w.p. ^
R(ρ)

|q |i^

The robustness of magic R(ρ) gives another 
estimator 𝔼(d ·φ) = ρ, via stab. states {|φ    φ |}:〉〈i i

^ ^

Runtime Analysis
^ ^

Hoeffding inequality gives a condition to achieve accuracy ε 
with probability 1 - δ in terms of the maximum value of the 
distribution:

 

# samples ≥      · ln      · (maximum)
22 

ε  2
2 
δ  

The sampling algorithms output the product of many cost 
terms, one for each input state, quantum channel, and 
observable. When the cost is > 1 the range grows exponentially. 
Therefore, a component is efficient when its cost is less than 1.

 

Goal: estimate Tr[E ·Λm(...Λ2(Λ1(ρ))...)]Circuit:         ρ        →       Λ1 → Λ2 → ... → Λm         →         E 
input state quantum channels observable

1. Sample a σ and c for the input state ρ 

output  = sample from c(ρ)  

operator  = sample from σ(ρ) 

maximum  = D(ρ) 

2. For each i, sample a σ and c for Λi(operator)  

output  *= sample from c(Λi(operator))  

operator  = sample from σ(Λi(operator)) 

maximum  *=  max D(Λi(σ))  

3. Take inner product with observable

maximum  *= max Tr(σ E)  

output *= Tr(operator · E) 

return output, maximumPaulis σ 

Paulis σ 

from 1 to m

Channel adjoint Λ of Λ satisfies Tr(Λ(A) · B) = Tr(A · Λ(B)) 
† †

1. Sample a σ and c for the observable E 

output  = sample from c(E)  

operator  = sample from σ(E) 

maximum  = D(E) 

2. For each i, sample a σ and c for Λi(operator)  

output  *= sample from c(Λi(operator))  

operator  = sample from σ(Λi(operator)) 

maximum  *=  max D(Λi(σ))  

3. Take inner product with input ρ  

maximum  *= 1         (  = max Tr(σρ))

output *= Tr(operator · ρ ) 

return output, maximumPaulis σ 

Paulis σ 

from m to 1
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〉〈
〉〈

1. Sample a φ and d for the input state ρ 

output  = sample from d(ρ)  

operator  = sample from φ(ρ) 

maximum  = R(ρ) 

2. For each i, sample a φ and d for Λi(operator)  

output  *= sample from d(Λi(operator))  

operator  = sample from φ(Λi(operator)) 

maximum  *=  max R(Λi(|φi     φi|))  

3. Take inner product with observable

maximum  *= max Tr(|φi     φi| E)  

output *= Tr(operator · E) 

return output, maximum

from 1 to m

 

stab. states |φi     φi|〉〈
stab. states |φi     φi|〉〈

output is an unbiased estimator
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Stabilizer propagation can efficiently simulate input states that are mixtures of stabilizer states.

Schrödinger propagation can simulate larger class of hyper-octahedral states, defined by:

According to the Hilbert-Schmidt measure, hyper-octahedral states are much more plentiful.

The runtime of Heisenberg propagation does not depend on the input state at all.

D(ρ) ≤ 1

Efficient Channels
We exploit channel-state duality to map two-qubit states to
qubit-to-qubit quantum channels. Pauli propagation methods
consistently outperform stabilizer propagation for these
channels.

Consider a channel Λf,θ which is the unitary e-iθZ/2 composed 
with a depolarizing channel with fidelity f. Pauli propagation 
simulates more of these channels. 
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