Thermal State Preparation via Rounding Promises

IBM Quantum arXiv:2210.01670

Patrick Rall, Chunhao Wang, Pawel Wocjan patrickjrall@ibm.com cwang@psu.edu

pawel.wocjan@ibm.com

Main Result: A quantum algorithm for preparing thermal states by simulating thermalization

I. Overview

Given a Hamiltonian H, prepare its thermal state ρ_{β} .

Main Idea: If Nature can thermalize it, so can we!

Objective: build Lindblad oracle for Davies generator.

III. Is a "Promised" Thermal State Good?

Original Hamiltonian H (no promise) ightarrow"Promised" Hamiltonian \hat{H} (bad energies removed)

$$\left|
ho_{eta}^{H}-
ho_{eta}^{\hat{H}}
ight|_{1}pprox 1$$

Missing energies: not a good approximation!

Solution: pick a random promise.

II. Why Rounding Promises?

Each
$$\lambda$$
 unlikely to be missing $\longrightarrow \left| \rho_{\beta}^{H} - \mathbb{E}_{\hat{H}}[\rho_{\beta}^{\hat{H}}] \right|_{1} \leq \delta$

'right'

Measure POVM $P_{
m LR}$, $I-P_{
m LR}$ on input state σ ightarrow

post measurement state satisfies left or right promise

V. Maintaining a Rounding Promise

Purpose of coupling operator $S \rightarrow$ 'scramble' energy eigenstates Problem: even if σ satisfies promise, scrambled state $S\sigma S^{\dagger}$ might not.

VI. Performance

