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Quantum algorithms have a fascinating relationship with randomness. On the one

hand, the dynamics of quantum circuits and quantum physics defy description with classical

probability. This is, in some sense, because quantum mechanics requires the use of ‘negative

probabilities’ to describe what is going on. On the other hand, it is these very same neg-

ative probabilities that lend quantum computers their power. While classical Monte Carlo

strategies fail to efficiently simulate arbitrary quantum computations, quantum computers

can be used to speed up the performance of Monte Carlo algorithms.

In this dissertation we explore the connections between Monte Carlo estimation and

quantum computation. We present several quantum algorithms for Monte Carlo estimation

tasks in physics, such as estimating physical quantities and measuring observables. We also

present classical algorithms that simulate quantum computers using Monte Carlo strategies

that succeed in avoiding a sign problem for an interesting family of circuits.

We begin by deepening our understanding of the seminal result by Brassard, Høyer,

Mosca, and Tapp [BHMT00]: while classical Monte Carlo estimation requires O(ε−2) sam-
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ples to estimate a quantity to accuracy ε, quantum computers merely require O(ε−1). While

this algorithm is extremely widely used, it is also very complicated. We give a new, simpler

quantum algorithm for quantum estimation. We find that the problem reduces to estimating

a parameter θ, given access to a coin with bias sin2(nθ).

Next, we present a review of block encodings. Block encodings are a recently de-

veloped technique for designing quantum algorithms that permit us to use non-unitary

matrices. We also review singular value transformation, a powerful technique for applying

functions to the singular values of block encoded matrices. While [GSLW18] presents a

comprehensive analysis of these techniques, we find that there is a need in the literature

for a more accessible introduction to the subject. Several results in this dissertation rely on

block encodings and singular value transformation.

We proceed to use the power of block encodings to construct quantum algorithms

for the estimation of some physical quantities. We give a subroutine that, given access to

a block encoding of O can estimate the expectation 〈O〉. This subroutine harnesses the

quadratic speedup for Monte Carlo estimation presented earlier. We then build algorithms

for computing n-time correlation functions, the density of states of a Hamiltonian, and linear

response functions.

Another fundamental task in simulating physical systems is measuring in the eigen-

basis of an observable O and extracting an eigenvalue. This is usually performed via a very

complicated method: we pretend that O is a Hamiltonian, perform Hamiltonian simulation

eiOt, and then use phase estimation to extract the eigenvalues of O. We find that block

encodings and singular value transformation let us build a much simpler algorithm for this

task. The idea is to directly construct block encodings of matrices encoding the bits of a

x



binary expansion of the eigenvalues of O, and then the extract the estimate one bit at a

time. We find that this method is about 20x faster than the one based on phase estimation.

Finally, we turn to classical Monte Carlo strategies for simulating quantum circuits.

A famous early result of quantum information was that classical computers can simulate

Clifford circuits [Gottesman98]. We combine this result with quantum Monte Carlo to

obtain a classical algorithm for simulating all quantum circuits. However, the further away

the circuit is from the Clifford group, the worse the impact of the sign problem becomes.

These algorithms have several interesting properties. They can simulate Clifford circuits

in linear time, which is quadratically faster than the best known deterministic algorithm

[AG04]. They can also simulate a large family of input states that cannot be made using

Clifford circuits.
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Chapter 1

Introduction

The world has many possible states. The number of states an object can be in

tends to grow exponentially in its size. Describing any particular state might not be so

challenging: if a physical system has N many possible states, then we only need about

log2N many bits to write it down - the logarithm cancels the exponent, and we are back in

business. But what if we are uncertain about what state the system is in? To even describe

our own uncertainty, we need to write down a probability for each of the possible states.

This is clearly intractable in general.

A key feature of quantum mechanics is that uncertainty is inextricable from the

physical state itself. There is no way to deterministically predict the outcomes of all exper-

iments. This fact frustrated many scientists in the early days of quantum mechanics: for

example, Albert Einstein famously resisted the idea [Isaacson07], and considered its implica-

tions paradoxical [EPR35]. But another consequence is that it makes the study of quantum

systems much harder computationally. The behavior of stochastic processes is very difficult

to study with deterministic means. For this reason, computational approaches often adopt

randomness themselves.

However, quantum mechanical systems also resist a stochastic description. This

might have been very pleasing to some scientists: from a Bayesian perspective we can just

think of randomness as an uncertainty in the mind of a human being, while Nature herself
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refuses to ‘play dice’. However, Bell inequality violations [Bell64] show us that such a

perspective does not work when we consider only probability distributions of positive real

numbers. Quantum mechanics implies some form of ‘negativity’ in the distribution. This

could manifest as complex amplitudes in state vectors or complex off-diagonal entries in

density matrices, or as negative quasiprobabilities in some hidden variable theory.

The fact that a stochastic hidden variable theory cannot predict the outcomes of

quantum mechanics has obvious philosophical consequences: it seems to suggest that ran-

domness is inherent to the natural world, and sometimes has nothing to do with the un-

certainty or ignorance of a human being. But it has computational consequences too: as

far as we know, it prohibits randomized classical algorithms from efficiently predicting the

outcomes of quantum systems. Richard Feynman was one of the first to observe this. In his

famous 1981 lecture he insists that Nature has too many variables to allow for an efficient

description on a normal computer. Of course, probabilistic processes also have too many

variables to allow an efficient deterministic description. The key observation which Feyn-

man also alludes to is that because of the limitations of hidden variable theories, quantum

mechanics does not even permit an efficient description in terms of probability distributions.

Consequently, Feynman proposes a computer where superpositions over program

states are as natural as tossing a coin as a part of a classical algorithm. The promise of

such ‘quantum computers’ is that, since they obey the same rules as Nature herself, they

can help us understand physical phenomena in ways previously not possible. Since quantum

technologies have already had an astounding impact on our daily lives, from computer chips

to solar cells, quantum computers also promise vast practical applications. This subject was

once a curiosity at the fringes of physics and computer science, only considered a radical
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and impractical academic pastime. But since then, thanks to breakthroughs in the 1990s,

quantum computation has blossomed into an enormously rich and exciting field.

As such, our understanding of the capabilities of quantum computers has advanced

significantly since Feynman’s time. We can be more concrete about exactly how useful

we expect quantum computers to be for solving physics problems. We can crudely divide

calculations in physics into two main categories: statics and dynamics. A statics question

is usually of the form: In what state is a physical system likely to be found? For example,

what portion of a floating body will be submerged underwater? What is the color of a

black body at a certain temperature? On the other hand, a dynamics question assumes you

already know the current state and asks: What will the state be like after some amount

of time? Given that the weather was sunny today, will it be sunny tomorrow? When two

protons at high velocity collide, what particles do they produce? A significant finding of

the past few decades it that quantum computers are very good at answering ‘dynamics

questions’ about quantum physics. This stems from very efficient quantum algorithms for

simulating the dynamics of Hamiltonians, either via the Trotter approximation [KKR04] or

via qubitization [LC1606, LC1610].

But for ‘statics questions’, the exponential growth of possibility spaces seems to

prevent quantum computers from being a silver bullet [KKR04]. Just because a quantum

computer can easily write a quantum state down does not mean that it can easily find

a quantum state that matches a certain set of constraints. For example, in ground state

finding we are interested in the quantum state that minimizes the energy. For thermal state

preparation we want to find the state that maximizes entropy given a certain average energy.

Of course, the challenge of searching large possibility spaces does not stem from quantum

3



mechanics! Any classical optimization problem, like finding the shortest Hamiltonian cycle

on a weighted graph, can be phrased an energy estimation problem by simply encoding

the cost function into the energy. Such general classical optimization problems are widely

believed to not be tractable even by a quantum computer. So why should searching over a

quantum possibility space be any easier?

Optimization problems remain ubiquitous in science and engineering despite their

hardness in the general case. Randomness becomes an extremely valuable asset in tackling

these problems. Instead of painstakingly iterating and eliminating possibilities, we can

simply randomly guess until we find a good answer. This is called a ‘Monte Carlo’ algorithm.

A big part of their practicality stems from the fact that it is usually not necessary to obtain

an answer that is exactly correct with certainty. An answer that is probably roughly right is

usually good enough. Many randomized algorithms end up being absurdly simple, because

the majority of the challenge lies in making a rigorous probabilistic argument that the

method works. In practice, it is often sufficient simply to experimentally demonstrate that

the Monte Carlo method is effective.

A surprising discovery that was not anticipated by the field’s earliest visionaries is

that quantum computers can improve the performance of Monte Carlo algorithms. Just

as how classical randomized algorithms can sometimes give a polynomial advantage over

deterministic computation, quantum algorithms can improve certain randomized algorithms.

The most famous example of this is Grover’s search algorithm [Grover96]: say there are N

possibilities, and each one is easily verified to be ‘correct’ or ‘incorrect’. The goal of ‘search’ is

to find any correct possibility. Both deterministic and randomized algorithms require at least

∼ N verifications to solve the problem. But Grover showed that a quantum computer merely

4



needs ∼
√
N . The fact that the search problem solved by Grover’s algorithm is so abstract

is precisely what lends it its power. Many problems in computer science and in physics

can be put into a form where they can benefit from this quantum speedup. This includes

minimizing functions [Grover97], the traveling salesman problem and techniques involving

dynamic programming [Ambainis&18], as well as ground state finding [LT20] and thermal

state preparation [CS16]. Quantum computers do not make the difficulty of unstructured

optimization problems magically disappear. For some important problems we cannot expect

exponential speedups, even if we leverage a quantum computer’s ability to efficiently write

down quantum states. On the other hand, the value of a significant polynomial speedup is

not to be understated: a runtime of ∼ N4 is impossibly impractical compared to ∼ N . If

one understands a problem well, carefully crafted quantum algorithms can make previously

unattainable solutions reachable.

In this dissertation we explore the relationship of quantum computers with Monte

Carlo estimation. We present nine algorithms, two classical and seven quantum. These

solve both abstract problems like estimation and circuit simulation, as well as more concrete

problems like energy measurement and determining the density of states of a physical system.

In sections 1.1, 1.2 and 1.3 of this introduction we informally discuss the capabilities of

classical and quantum computers, and allude to how this connects to the contributions

presented in this dissertation. In section 1.4 we directly summarize the remaining chapters.

1.1 Classical Estimation and Quasiprobability

Many quantities in physics and other fields are prohibitively difficult to compute

exactly. However, we are usually satisfied with an estimate that is probably close to the
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answer. Such estimates can be obtained through Monte Carlo estimation, which is often

as simple as sampling a bunch of random numbers from some probability distribution and

then taking the average.

One example of Monte Carlo estimation that is common in physics is ‘quantum

Monte Carlo’. This is actually a large family of classical methods for studying quantum

systems. We give a simple example here to illustrate the basic idea. Say ρ is a quantum

state and O is some observable, and we want to compute the expected value 〈O〉 = Tr(ρO).

Say there is also a family of quantum states {|φi〉} (e.g., Gaussian states or stabilizer states)

that makes expectations 〈φi|O |φi〉 easy to compute, and we know of real qi such that:

ρ =
∑
i

qi |φi〉 〈φi| . (1.1)

We could try to compute the expectation of the observable via

Tr(ρO) =
∑
i

qi 〈φi|O |φi〉 , (1.2)

but there could be very many nonzero qi, so summing over all of them is computationally

expensive. Instead, we could take a Monte Carlo approach. Since ρ is normalized, we see

that the qi sum to 1. If furthermore they all are non-negative then the qi form a probability

distribution. Otherwise, we can define |~q|1 to be the sum of the magnitudes of the qi. Then

we define a random variable:

X = |~q|1 ·
qi
|qi|
· 〈φi|O |φi〉 with probability

|qi|
|~q|1

(1.3)

If we can sample from this random variable, then we can take the average of many samples

to estimate its expectation. We see that the expectation is the desired quantity:

E[X] =
∑
i

|~q|1 ·
qi
|qi|
· 〈φi|O |φi〉 ·

|qi|
|~q|1

=
∑
i

qi 〈φi|O |φi〉 = Tr(ρO) (1.4)
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How many samples do we need in order to achieve an estimate with decent accuracy?

Fortunately this statistics problem is well studied, and the answer to this question is given

by the Chernoff-Hoeffding theorem. Say X̂ is the average of N samples, ε is the desired

accuracy, and 1− δ is the desired success probability. Then:

N ≥ 1

2ε2
· ln 2

δ
·Var(X) → Pr[|X̂ − E[X]| ≥ ε] ≤ δ. (1.5)

While the variance itself may be hard to obtain, we can observe that |X| ≤ |~q|1 ·|O| (here |O|

is the spectral norm of O) and obtain the bound Var(X) = E[(X−E(X))2] ≤ (2 · |~q|1 · |O|)2.

Then our classical algorithm requires N ∈ O(ε−2 log(δ−1) · |~q|21 · |O|2) many samples.

The |~q|21 term in the runtime is a manifestation of the famous ‘sign problem’. Recall

that the qi sum to 1, so if the qi are all non-negative then |~q|21 = 1. So if there are no

minus signs on the qi the simulation is efficient. Notice that in this case the state ρ is

in the convex hull of the {|φi〉 〈φi|}. However, for any family of states {|φi〉 〈φi|} (that is

not just ‘all states’) there will exist ρ outside their convex hull, meaning that some of the

qi must be negative and we have |~q|1 > 1. While the magnitudes of the |qi| are bounded

by a constant because ρ is positive semi-definite, the number of qi scales quadratically

with the Hilbert space dimension. So for many quantum states |~q|1 will be prohibitively

large, making the simulation slow. Nonetheless, there exist families of quantum circuits

these classical simulation techniques can remain effective. We explore such a situation in

Chapter 6.

1.2 Capabilities of Quantum Computers

This section is intended for readers who are already familiar with quantum me-

chanics, but might not be so familiar with how quantum mechanics is used in quantum
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computation. Before we go into technical detail, we emphasize some differences between the

dynamics of quantum computers and the dynamics of similar systems in physics.

Quantum computers consist of many two-level systems called qubits that are cou-

pled together by a highly programmable time-dependent Hamiltonian. Initially, we can

think of a quantum computer like a quantum many body system, or a system of coupled

spins. In fact, there are many different physical systems, such as some cold atoms in an

electric field or superconducting Josephson-Junctions, that can act like a quantum com-

puter. However, the dynamics of a quantum computer are radically different from how such

systems would usually behave. First, we usually expect to find the quantum computer in a

pure, non-thermal quantum state. This is because quantum computers can be ‘initialized’

to a state where all all the qubits are in a tensor product state |0〉⊗n. Second, we think

of time evolution on quantum computers as discrete, and individual degrees of freedom are

sometimes extremely strongly coupled and sometimes completely decoupled. This is because

the underlying Hamiltonian is so programmable that we have full control over the strength

and nature of the coupling between the qubits. Finally, as time passes, the quantum state

remains pure and does not thermalize or decohere. This is because quantum computers

are designed to almost completely insulate the state of the qubits from the environment.

Decoherence only occurs at the very end of the computation when the qubits are measured

and the qubits are reset.

Making a physical system behave in this highly unnatural way is an extremely diffi-

cult engineering challenge. However, there has been remarkable theoretical and experimental

progress towards this goal in the past few decades. On the theoretical side, quantum error

correction gives sound theoretical evidence that insulating a quantum computer from deco-
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herence is possible [ABO99]. On the experimental side, systems of coupled superconducting

Josephson-Junctions [Google&19, Wu&21] and squeezed photons [Zhong&20, Zhu&21] have

demonstrated significant programmable control over Hilbert spaces so large that they might

be impractical to simulate even with the world’s largest supercomputers.

There are many models of quantum computation, but the most popular is the

‘quantum circuit’. In this dissertation we think of a quantum circuit as a symbolic expression

with the following structure:

C := U (a 2k × 2k complex unitary matrix) (1.6)

or |0〉
(

the column vector

[
1
0

])
(1.7)

or C · C (matrix multiplication) (1.8)

or C ⊗ C (tensor product) (1.9)

or C† (adjoint / conjugate transpose). (1.10)

The components U and |0〉 are the primitive building blocks for a circuit. These

can then be chained together into a more complex expression using multiplication, tensor

product and adjoint. The ‘size’ of a circuit C is the number of classical bits required to write

the expression down. A quantum computer can ‘evaluate’ a quantum circuit of size s in

time ∼ poly(s). To illustrate what we mean by ‘evaluate’ we provide some simple examples.

First, we define some simple unitary matrices. A matrix is unitary if it is square

and satisfies UU† = I.

X :=

[
0 1
1 0

]
Z :=

[
1 0
0 −1

]
H :=

1√
2

[
1 1
1 −1

]
(1.11)
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Here X,Z are the familiar Pauli matrices. The X matrix is very useful in quantum com-

putation because it can be used to flip a quantum bit from the |0〉 state encoding a ‘0’ to

the |1〉 state encoding a ‘1’. When we measure the final state of the quantum computer

evaluating the circuit X · |0〉 the output will always be ‘1’ . Here, ‘w.p.’ stands for ‘with

probability’:

X · |0〉 evaluates to

[
0 1
1 0

]
·
[
1
0

]
=

[
0
1

]
=: |1〉 . Output: 1 w.p. 100% (1.12)

H is called the ‘Hadamard gate’, and it is useful because it lets us create superposition.

The circuit H · |0〉 evaluates to a quantum state with amplitude 1/
√

2 for the ‘0’ possibility,

and 1/
√

2 for the ‘1’ possibility. When the final state of the quantum computer is in

superposition, then the quantum computer outputs a random answer according to the Born

rule [Born26]: if the amplitude of a possibility is α then the probability of observing it is

|α|2.

H · |0〉 evaluates to
1√
2

[
1 1
1 −1

]
·
[
1
0

]
=

1√
2

[
1
1

]
. Output:

{ 0 w.p. 50% = |1/
√

2|2
1 w.p. 50% = |1/

√
2|2

(1.13)

Quantum circuits can easily model the behavior of physical systems. Just as bits

can be used to represent any kind of information, the state of a quantum system can be

represented using qubits. This is particularly simple for spin systems, so as an example we

show how to simulate the dynamics of a transverse-field Ising model. Say we have a collection

of n spins arranged in a line, and we encode |↓〉 = |0〉 and |↑〉 = |1〉. The Hamiltonian is

then easily written in terms of the Pauli matrices:

Pk :=I⊗(k−1) ⊗ P ⊗ I⊗(n−k−1) (1.14)

H :=− J
n−1∑
k=1

ZkZk+1 − h
n∑
k=1

Xk (1.15)
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where J is the coupling strength that encourages spins to point the same or opposite direction

depending on its sign, and h is the strength of the magnetic field. To simulate time evolution

with respect to this Hamiltonian for a time t we use the Suzuki-Trotter approximation

[Lloyd96, Childs&19]. This splits split the n-qubit unitary e−iHt/~ into a product of many

1- or 2-qubit unitaries:

e−iHt/~ ≈
m∏
j=1

(
n−1∏
k=1

exp

(
iJt

m~
ZkZk+1

)
·
n∏
k=1

exp

(
iht

m~
Xk

))
(1.16)

where m is a positive integer sufficiently large to make the approximation hold. The idea is

essentially to split the time evolution over time t into lots of tiny steps of length t/m. Then

the coupling term and magnetic field term in the Hamiltonian approximately commute

since they are then multiplied by a small prefactor. If two matrices A,B commute then

eA+B = eA · eB .

Say we want to sample from the distribution over spin configurations obtained from

starting in the |↓〉⊗n configuration and then evolving for time t under H. Then we have a

quantum computer evaluate the following circuit:

U coupl
k := I⊗(k−1) ⊗ exp

(
iJt

m~
· Z ⊗ Z

)
⊗ I⊗(n−k−2) (1.17)

Umag
k := I⊗(k−1) ⊗ exp

(
iJt

m~
X

)
⊗ I⊗(n−k−1) (1.18)

m∏
j=1

(
n−1∏
k=1

U coupl
k ·

n∏
k=1

Umag
k

)
|0〉⊗n approximately evaluates to e−iHt/~ |↓〉⊗n (1.19)

We observed that for a spin system it was relatively easy to encode the time evolution into

a quantum circuit acting on qubits. We can then use the quantum computer to probe the

dynamics of the physical system. Quantum computers are quite good at solving dynamics

problems in general. Tools like the Jordan-Wigner transformation [SOKG03] can also encode
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Hamiltonians with annihilation and creation operators into qubits. This can be used to study

Fermi-Hubbard models, molecular Hamiltonians, and even quantum field theory [JLP11].

Say we are interested in obtaining the ground state of a Hamiltonian H, call it

|ψ0〉. This is known to be intractable for quantum computers in the general case [KKR04].

However, we could be in a special situation such as the one considered by [LT21] where

there is a quantum state |φ〉 with good overlap with |ψ0〉, and a projector Π that projects

onto the ground state. We are given quantum circuits that implement the unitary matrices:

CΠ implements (I − 2Π) (1.20)

Cφ implements (I − 2 |φ〉 〈φ|) (1.21)

Cprep
φ satisfies Cprep

φ |0〉⊗n = |φ〉 (1.22)

Then, we can follow a generalization of Grover’s algorithm called ‘amplitude ampli-

fication’. Assume 〈ψ0|φ〉 is a positive real number, and define θ by sin(θ) := 〈ψ0|φ〉. Then

there exists a state |ψ⊥0 〉 such that:

|φ〉 = sin(θ) |φ0〉+ cos(θ) |ψ⊥0 〉 (1.23)

With some algebra we can show that the quantum circuit (CφCΠ)
k
Cprep
φ |0〉⊗n satisfies:

(CφCΠ)
k
Cprep
φ |0〉⊗n evaluates to sin((2k + 1)θ) |ψ0〉+ cos((2k + 1)θ) |ψ⊥0 〉 (1.24)

So by selecting n such that (2k+ 1)θ ≈ π/2, we have a quantum circuit that approximately

prepares the ground state |φ0〉. We have just sketched a very general method for preparing

quantum states of interest.

In the above we have outlined some of the basic capabilities of a quantum computer.

The most important observation is that quantum mechanical systems can be translated into
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systems many qubits. Then, quantum circuits can be used to probe various aspects of the

system of interest. We can rewrite time evolution under a Hamiltonian as a sequence of

local unitary quantum operations, allowing quantum circuits to answer questions about the

dynamics of quantum systems. Also, if some assumptions are met, then we can prepare the

ground states of interest using a generalized version of Grover’s algorithm.

These tools put us in a good position to study the nature of quantum systems using

quantum computers. In the next section we apply these tools to the problem of observable

estimation we considered in the previous section.

1.3 Quantum Algorithms for Observable Estimation

While many ideas from quantum physics map very cleanly onto quantum circuits,

observables require a little more work. Many of the contributions presented in this disser-

tation are specifically about providing better tools for studying observables on a quantum

computer.

In quantum physics, an observable is denoted by a Hermitian matrix O. This matrix

has an eigendecomposition into eigenvectors λi and eigenstates |λi〉:

O =
∑
i

λi |λi〉 〈λi| (1.25)

Say we are interested in evaluating 〈ψ|O |ψ〉. Since O is Hermitian, its eigenstates |λi〉 form

a basis. We can expand |ψ〉:

|ψ〉 =
∑
i

|λi〉 · 〈λi|ψ〉 (1.26)
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We see that the expectation of the observable is:

〈ψ|O |ψ〉 =
∑
i

λi · 〈ψ|λi〉 〈λi|ψ〉 =
∑
i

λi · | 〈λi|ψ〉 |2 (1.27)

Following the Born rule [Born26], quantum mechanics lets us sample from the random

variable:

Y = λi with probability | 〈λi|ψ〉 |2 (1.28)

so we see immediately that E[Y ] = 〈ψ|O |ψ〉. We also see that |Y | ≤ |O|, so following the

same analysis as above we require O(ε−2 log(δ−1) · |O|2) samples. The |~q|21 term from the

runtime of the classical method O(ε−2 log(δ−1) · |~q|21 · |O|2) is no longer present. This means

we have sidestepped the sign problem entirely.

However, as we saw in the previous section, measurement on a quantum computer

works quite differently from how it works in quantum physics. In the model we described

above, quantum circuits are limited to measuring the state of the quantum system in a fixed

basis called the ‘computational basis’. The problem of sampling from the random variable

Y is related to producing a quantum circuit that can give access to the |λi〉 basis from the

computational basis. In particular, we would like to perform the transformation:

∑
i

〈λi|ψ〉 · |λi〉 |0〉⊗n →
∑
i

〈λi|ψ〉 · |λi〉 |λ̂i〉 (1.29)

where |λ̂i〉 is an n-bit computational basis state that encodes an estimate of the eigenvalue

λ̂i. For example, if λi = 0.101 then |λ̂i〉 could be |1〉 ⊗ |0〉 ⊗ |1〉. Then, to sample from the

random variable Y we simply look at the output state in the computational basis and read

off a randomly sampled eigenvalue.

Performing the above transformation is easy when O is local - that is, supported

on a small subset of the qubits. However, there is a particularly important example of an
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observable that is usually not local in this sense: the Hamiltonian. The problem of energy

estimation is famously solved via a complicated strategy called ‘phase estimation’ [NC00],

which involves many sophisticated tools such as Hamiltonian simulation and the quantum

Fourier transform. In Chapter 5 we outline a new algorithm for energy estimation (that

can also be applied to arbitrary observables) that significantly outperforms the traditional

method in terms of circuit size.

Above we showed how quantum computers can avoid the sign problem by avoiding

quasiprobabilities and directly sampling in the eigenbasis of an observable. But the runtime

of estimating expectations of observables can be improved even further. In their seminal

work, [BHMT00] proposed a quantum algorithm called ‘amplitude estimation’ that performs

the following task. The premise is extremely similar to amplitude amplification: say |φ〉 is

a quantum state and Π is a projector. Then let a := |Π |φ〉 | be the ‘amplitude’. Given

sub-circuits CΠ, Cφ, and Cprep
φ as above, their algorithm outputs an estimate â such that:

Pr[|â− a| ≥ ε] ≤ δ (1.30)

The algorithm makes use of merely O(ε−1 log(δ−1)) many instances of the sub-circuits.

Notice that the ε−2 we obtained from the Chernoff-Hoeffding theorem has been improved

to ε−1. This improvement in the accuracy of estimation is the source of many polynomial

quantum speedups. While their algorithm is quite complicated, one of our findings is that a

significantly simpler algorithm for amplitude estimation exists. We discuss these techniques

in Chapter 2.

At first glance, amplitude estimation may seem like a very restricted task since Π

must be a projector. However, it turns out that pretty much any Monte Carlo estimation
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task can be mapped to and accelerated by amplitude estimation. There is a large body of

literature that showcases this fact: there are quantum algorithms for estimating classical

partition functions [Mon15], performing Bayesian inference and preparation of thermal states

[HW19, AHNTW20], estimation of the volumes of convex bodies [Chak&19], and solving

differential equations with applications in finance [An&20]. There are also more general tools

for quantum mean estimation [HM18], quantum median estimation [BDGT11], and quantum

gradient estimation [Jordan04, GAW17]. We find that there is a quadratic quantum speedup

for a very generic notion of estimation, just like how Grover’s search algorithm works for

a very broad idea of search. In fact, many of the works listed make use of a combination

of quantum search and estimation in order to combine multiple quadratic speedups into a

more significant polynomial speedup.

Here we show how estimation of expectations of observables 〈ψ|O |ψ〉 can be brought

into the amplitude estimation framework using block encodings. Block encodings are a

fairly recent tool for designing quantum algorithms that enable manipulation of non-unitary

matrices. If O is a observable, then a block encoding of O is a unitary matrix UO that puts

O into the top left submatrix:

UO :=

[
O ·
· ·

]
(1.31)

Block encodings can be synthesized in several ways. For example, it was shown in

[BCK15] that if O is a linear combination of unitaries, then there exists a block encoding of

O. Since Pauli matrices are simultaneously unitary and a basis for all hermitian matrices,

we can use linear combinations of Pauli matrices to synthesize any observable. In Chapter 3
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we give an accessible review on how to construct quantum circuits with block encodings.

We can rephrase the defining property of UO as a property of a quantum circuit:

(〈0| ⊗ I)UO(|0〉 ⊗ I) = O (1.32)

Now we can construct a state |φ〉 and a projector Π so that a = |Π |φ〉 | = | 〈ψ|O |ψ〉 |.

|φ〉 = UO(|0〉 ⊗ |ψ〉) Π = |0〉 〈0| ⊗ |ψ〉 〈ψ| (1.33)

|Π |φ〉 | = |(〈0| ⊗ 〈ψ|)UO(|0〉 ⊗ |ψ〉)| = | 〈ψ|O |ψ〉 | (1.34)

We can the use amplitude estimation to obtain an estimate â of | 〈ψ|O |ψ〉 | with accuracy

ε. The runtime is O(ε−1 log(δ−1) · |O|). This quadratically improves over the complexity of

the classical algorithm in both ε and |O|.

In Chapter 4 we show how to generalize the above technique to estimate 〈ψ|O |ψ〉

rather than its magnitude, and show how to estimate the expectation Tr(ρO) of mixed states

ρ. The ability to estimate observables on a quantum computer enables us to compute many

interesting quantities in physics. This includes n-time correlation functions, the density of

states, and a broad family of linear response functions.

1.4 Summary of Chapters

The above discussion outlined many of the general ideas that appear in this disser-

tation, and alluded to some of the contributions. To make these contributions more explicit,

we give a short summary of each chapter of the dissertation here.
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Chapter 2: Simplified Amplitude Estimation

As discussed above, amplitude estimation is a powerful quantum subroutine that

quadratically improves the accuracy-runtime tradeoff for Monte Carlo estimation. Above,

we applied it to the quantum mechanical problem of observable estimation, but it can also be

used for entirely classical problems. The general ‘black-box’ estimation problem considered

in the classical algorithms and complexity literature is ‘approximate counting’: we are given

a set of N items, and an unknown number K > 0 of these are ‘marked’. We are to output

an estimate K̂ of K that satisfies:

Pr[(1− ε)K ≤ K̂ ≤ (1 + ε)K] ≥ 1− δ (1.35)

for some failure probability δ. This algorithm is given an ‘oracle’ that checks if a particular

item is marked, as should query this oracle as few times as possible. The power of approxi-

mate counting comes from its abstract nature: the items could be graph colorings that are

valid whenever the coloring is valid, or configurations of a classical spin system that are

marked whenever the total energy is below some threshold.

In 2000, Brassard, Høyer, Mosca, and Tapp [BHMT00] presented a quantum algo-

rithm that solves approximate counting as presented above in O
(√

N/K · ε−1 log
(
δ−1
))

queries. This is a quadratic improvement over the best classical algorithm which takes

Θ
(
(N/K) · ε−2 log(δ−1)

)
queries.

However, this algorithm is very complicated. First, it constructs a state |φ〉 and

a projector Π such that |Π |φ〉 | =
√
N/K := sin(θ). Then, following our discussion of

amplitude amplification above, it constructs a quantum circuit:

CφCΠ = (I − 2Π)(I − 2 |φ〉 〈φ|) (1.36)
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and observes that the complex eigenvalues of this matrix are actually e±2iθ. Then, it uses an

application of the quantum phase estimation algorithm [NC00] to extract ±2θ to sufficient

precision, and translates the result into an estimate K̂.

In 2019, [AR19] observed that it is possible to perform approximate counting with-

out invoking the quantum phase estimation algorithm. In fact, all the quantum parts of

this algorithm can be packed into a single black-box, after which the algorithm becomes

entirely classical. This black-box is called a ‘Grover coin’ - a coin that comes up heads with

probability sin2(nθ) for any odd integer n. We construct such a coin via a circuit we have

already discussed: we select k such that 2k + 1 = n, and we evaluate the quantum circuit

(CφCΠ)kCprep
φ |0〉 to sample an item that is marked with probability sin2((2k + 1)θ). Each

toss of the Grover coin uses O(n) queries to the oracle.

Chapter 2 showcases the algorithm presented in [AR19] that uses repeated tosses

of the Grover coin to obtain an estimate of θ. The estimate of θ then gives an estimate of

K. The algorithm neatly splits into two parts. First, a pre-processing step obtains bounds

θmin and θmax such that θmin ≤ θ ≤ θmax and θmax/θmin ≤ 1.65. This is achieved by tossing

Grover coins with exponentially increasing n until enough heads are observed. Second, the

algorithm iteratively shrinks the interval [θmin, θmax] until θmax/θmin ≤ 1 + ε. If the interval

is this small, then any value inside the interval is a good estimate of θ.

Actually, several simplifications of [BHMT00] appeared in 2019. The first of these

was [Suzuki&19], which presented an algorithm based on maximum likelihood estimation.

This was followed by [Wie19], who discovered an algorithm similar to Kitaev’s iterative

phase estimation algorithm [Kit95]. However, both of these algorithms claimed accuracy

solely based on numerical experiments and do not keep track of the failure probability
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throughout the algorithm. In that regard, the primary advancement over the state of the

art contributed by [AR19] is that it features a rigorous proof that the presented algorithm

is correct. Furthermore, it presents an algorithm for relative error estimation rather than

additive error estimation. On the other hand, the analysis of the algorithm makes no attempt

to reduce the query complexity of [BHMT00] in terms of constant factors. This was achieved

by [GGZW19], who present a modified version of the algorithm developed in [AR19]. They

also give a comprehensive constant-factor performance analysis, demonstrating that their

new algorithm has the best performance of all currently known algorithms for approximate

counting and amplitude estimation. At time of writing, [GGZW19] continues to be the state

of the art algorithm for the task.

Chapter 3: An Introduction to Block Encodings

In the previous section we mentioned block encodings, a method for manipulating

non-unitary matrices on a quantum computer. This capability is enormously useful, since

in the above we encountered several matrices that are not unitary: observables O, the

Hamiltonian H, as well a projector onto the ground state Π. Being able to reason about

non-unitary matrices directly greatly simplifies the construction of quantum algorithms.

Chapters 4 and 5 leverage these capabilities, so this chapter provides a short review of these

techniques.

This chapter is largely based on the results of [GSLW18], which is extremely com-

prehensive but also extremely technical and challenging to read. A recent review article

[MRTC21] is less technical, and argues that these techniques enable a ‘grand unification

of quantum algorithms’. They give many examples of their applications without detailing
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their implementation. Our contribution aims to strike a middle ground: we focus on the

techniques themselves rather than their applications, and explain how they work with a

balance between rigor and readability. Unlike the other chapters, this chapter is not based

on an existing publication.

In an earlier section we discussed the capabilities of quantum computers in terms

of quantum circuits C. A quantum circuit C is a symbolic expression composed of unitary

matrices U , initial states |0〉, matrix multiplications ·, tensor products ⊗, and adjoints †. If a

circuit requires s bits to write down, then a quantum computer can evaluate the expression

in time poly(s). Block encodings let us define a type of circuit called a ‘block encoding

circuit’ B with a slightly more general set of operations.

B := M (any 2n × 2m matrix) (1.37)

or B ·B (matrix multiplication) (1.38)

or B +B (matrix addition) (1.39)

or B ⊗B (tensor product) (1.40)

or B† (adjoint / conjugate transpose) (1.41)

or p(B) (singular value transformation by a polynomial p). (1.42)

The key idea is that for every block encoding circuit B there exists a unitary circuit

C that is only polynomially larger and evaluates to the same thing. In this sense, we

can think of block encoding circuits as a ‘high level programming language’ for quantum

computers that ‘compiles’ to unitary quantum circuits.

There are three major differences between block encoding circuits B and unitary

quantum circuits C. First, the unitary matrix U and initialization |0〉 primitives have been
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replaced with a single primitive: arbitrary 2n × 2m matrices M . Second, we have gained

the ability to add circuits together. This is a generalization of the ‘linear combinations of

unitaries’ technique explored by [CW12, Berry&14, CKS15] for the purposes of Hamiltonian

simulation. Finally, we have gained the ability to transform the singular values of a circuit

by a polynomial p. This is the most complicated new primitive, but also by far the most

useful. Singular value transformation underpins the most modern quantum methods for

Hamiltonian simulation, solving linear systems of equations [CKS15], and even amplitude

amplification [MRTC21].

Chapter 4: Estimation of Physical Quantities

Quantum computers are a powerful tool for studying physical systems. However,

earlier we discussed how different they are from the systems we want to study: time evolution

is discrete and unitary, and the quantum states are mostly pure. Translating problems from

physics into the language of quantum computation has become a research area in its own

right. Hamiltonian simulation alone is already an incredibly rich sub-field of quantum

algorithms. Say a condensed matter physicist, a nuclear physicist, or a chemist want to

benefit from the power of a quantum computer. Do they have to spend countless hours

familiarizing themselves with the details of quantum algorithms?

In [Rall20], we build quantum algorithms for some physical quantities, such as

correlation functions in the Heisenberg picture, the density of states, and linear response

functions. These algorithms are all based on the block encoding circuits we discussed in the

previous section. However, the central takeaway of the work is this: translating a physical

quantity into a language that quantum computers can understand is really not so difficult.
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It is clear from previous approaches [Pedernales&14, RC18] that the primary challenge is to

translate non-unitary observables into unitary matrices. But block encodings handle all of

that.

The technical tool of [Rall20] that bridges the gap between algebraic expressions for

physical quantities and quantum circuits is a quantum algorithm for observable estimation.

We already saw in the previous section that if O is an observable with a block encoding, and

|ψ〉 is a quantum state, then there exists a quantum algorithm that estimates | 〈ψ|O |ψ〉 |

to precision ε using O(ε−1 · |O|) queries. The observable estimation algorithm generalizes

this to estimation of Tr(ρO): the quantum state can now be mixed, the expectation can be

negative, and furthermore both the state ρ and the observable O only need to be represented

approximately.

From there, constructing an algorithm that estimates a complicated observable is

relatively easy: previous results for state preparation and Hamiltonian simulation can be

plugged together without needing to understand how they work. For example, we prepare

a thermal state of a Hamiltonian H using [CS16]. Then we use the algorithm presented in

[GSLW18] to make a block encoding of the time evolution operator e−iHt. Finally, we use

linear combinations of Pauli matrices [CKS15] to make block encodings of some observables

O1, O2, O3. Now we just combine all of these together: we move each the observables into

the Heisenberg picture with Oi(ti) := eiHtiOie
−iHti , multiply them, and use the observable

estimation algorithm to compute:

〈O1(t1)O2(t2)...〉 = Tr(ρO1(t1)O2(t2)...) (1.43)

Other interesting physical quantities are functions of the energy, and require a little
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bit more work. For example, say H is a Hamiltonian with dimension D and eigenvalues Ei.

Then, the density of states is given by:

ρ(E) :=
1

D

∑
i

δ(Ei − E) (1.44)

Since this is a sum of delta functions, particular values of ρ(E) are either 0 or ∞. Clearly

we are not actually interested in evaluating ρ(E), but rather ‘sketching’ the function over

the entire range of energies. One method for sketching ρ(E) is to compute a histogram: we

split the range of energies into several intervals [a, b] and compute:

histogram-bin(a, b) =

∫ b

a

ρ(E)dE (1.45)

Another standard technique for sketching ρ(E) that is used outside of the quantum com-

puting literature is the Kernel Polynomial Method (KPE) [WWAF05]. We normalize the

Hamiltonian so that |E| ≤ 1, and then split ρ(E) into a linear combination of Chebyshev

polynomials Tn(E):

ρ(E) =
1

π
√

1− E2

∞∑
n=0

cnTn(E) (1.46)

Now, another method of sketching ρ(E) is to truncate the above series at some desired

precision, and to compute the first couple ‘Chebyshev moments’ cn, given by:

cn :=

∫ 1

−1

ρ(E)Tn(E)dE (1.47)

We find that we can evaluate both cn and histogram-bin(a, b) by performing singular value

transformation on H to construct an observable, and then estimating its expectation with

the maximally mixed state. In the case of Chebyshev moments, we simply perform singular
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value transformation with p(x) = Tn(x). If H =
∑
iEi |ψi〉 〈ψi|, we find:

Tr

(
I

D
Tn(H)

)
=

1

D

∑
i

Tn(Ei) =

∫ 1

−1

1

D

∑
i

δ(Ei − E)Tn(E)dE =

∫ 1

−1

ρ(E)Tn(E)dE

(1.48)

So we can compute cn by evaluating the expectation of the observable Tn(H) on the max-

imally mixed state I/D. If instead we want to compute histogram-bin(a, b), we find a

polynomial wa,b(x) satisfying:

wa,b(x) ≈
{

1 if x ∈ [a, b]
0 otherwise

(1.49)

Then, following the same calculation as (1.48), histogram-bin(a, b) is approximated by the

expectation of wa,b(H) with I/D. Such a polynomial approximation can be constructed

using several ways. In [Rall20] we present a method based on Jackson’s theorem [Rivlin69]

and amplifying polynomials [Diak09]. However, in our later work [Rall21] which we discuss

in our next chapter, we find that a construction based on the Jacobi-Anger expansion [LC17]

yields better constant factors.

The above method for sketching the density of states ρ(E) also works for other

quantities like the local density of states, as well as correlation functions of the form

A(E) = 〈Bδ(H − E)C〉 which are useful for studying electrical conductivity [DiVentra08].

Overall we find that, using only a couple of tricks like a quantum algorithm for observable

estimation and the calculation in (1.48), block encoding techniques directly yield algorithms

for estimating quantities of physical interest.
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Chapter 5: Measuring Observables

In this chapter we revisit the problem of ‘measuring an observable’ on a quantum

computer. Say O is a Hermitian matrix with eigendecomposition:

O =
∑
i

λi |λi〉 〈λi| (1.50)

Then, if an experimenter measures the observable O given a quantum system in the state

|ψ〉, then with probability | 〈λi|ψ〉 |2 the experimenter sees λi while the system collapses into

the state |λi〉.

But, as discussed earlier, this is not how measurement works on a quantum com-

puter. Instead, we have the ability to measure individual qubits, collapsing their state to

either |0〉 or |1〉. If the qubits are entangled with the rest of the system, their collapse induces

a collapse of other quantum data. In order to implement observable measurement in the

physics sense, we must implement a quantum algorithm that performs the transformation:

∑
i

αi |λi〉 |0n〉 →
∑
i

αi |λi〉 |λ̂i〉 (1.51)

where |λ̂i〉 is a computational basis state encoding an estimate of λi. We can then proceed

to measure the |λ̂i〉 state.

Measuring an observable, especially the Hamiltonian, is an extremely common

subroutine in quantum algorithms. It is used in algorithms for preparing ground states

[LT20] and thermal states [Temme&09, YA11, Lemi&19], but also also for linear algebra

[HHL08, CKS15], estimating partition functions [Mon15] and performing Bayesian inference

[HW19]. The textbook method for performing the above transformation is phase estimation

[NC00], an extremely complicated algorithm involving both Hamiltonian simulation and the

quantum Fourier transform.
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In [Rall21] we present a new quantum algorithm for observable measurement that

is conceptually simpler, and offers an about 20x constant factor speedup over the traditional

method. The same techniques also yield new algorithms for phase estimation and amplitude

estimation.

The algorithm is based on block encoding techniques. Since |λ̂i〉 is a computational

basis state, we can write it as a tensor product of the bits in the binary expansion:

|λ̂i〉 = |bitn(λi)〉 ⊗ |bit2(λi)〉 ⊗ |bit1(λi)〉 (1.52)

where biti : R → {0, 1} indicates the i’th bit in the binary expansion. The main idea is to

construct approximate block encodings of projectors Πi that encode each of these bit values:

Πi =
∑
i

biti(λi) |λi〉 〈λi| ≈
∑
i

pi(λi) |λi〉 〈λi| = pi(O) (1.53)

where pi(x) is a polynomial that approximates the biti(x) constructed from the Jacobi-Anger

expansion [LC17].

Then, the algorithm leverages a novel ‘block measurement theorem’ that implements

the unitary UΠi given a block encoding of Πi:

UΠi = Πi ⊗X + (I −Πi)⊗ I (1.54)

UΠi(|0〉 ⊗ |λi〉) = |biti(λi)〉 ⊗ |λi〉 (1.55)

While the algorithm is very simple on a high level, a significant amount of technical work

is required for the analysis. A central challenge is dealing with the approximation error

in the construction of the polynomials pi(x) ≈ biti(x). Since polynomials are continuous

everywhere, but biti(x) has discontinuities, we find that achieving |pi(x) − biti(x)| ≤ ε for

all x is actually impossible. Worse yet, any quantum algorithm that is completely unitary
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has this limitation. The analysis requires carefully selecting and minimizing the size of

regions where the approximation fails to hold, and showing that the resulting errors do not

propagate to later bits.

We also perform a numerical constant factor analysis, where we show that the novel

observable estimation algorithm is about 20x faster than the algorithm based on traditional

phase estimation. The novel phase estimation algorithm based on the same techniques is

about 14x faster. Since phase and observable estimation are extremely common subroutines

in quantum algorithms, we expect these algorithms to be very useful for the design of future

algorithms. For example, [WT21] uses our observable estimation algorithm to design a novel

method for thermal state preparation.

Chapter 6: Estimating Near-Clifford Quantum Circuits

In the final chapter, we return to the design of classical Monte Carlo algorithms.

Earlier, we discussed how a quantum state |ψ〉 could be decomposed into a linear combina-

tion of some family of quantum states {|φi〉}:

|φ〉 〈φ| =
∑
i

qi |φi〉 〈φi| (1.56)

Then, we could represent |ψ〉 via a probability distribution over the set {|φi〉}:

X = |~q|1 ·
qi
|qi|
· |φi〉 〈φi| with probability

|qi|
|~q|1

. (1.57)

Then E[X] = |ψ〉 〈ψ|. If the |φi〉 have efficient classical representations, and we can sample

from the distribution |qi|/|~q|1, then we obtain a classical algorithm for analyzing quantum

mechanics.

This includes the evaluation of quantum circuits. [Bennink&17] performs exactly
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the above by selecting {|φi〉} to be the stabilizer states, which are a discrete family of n-

qubit quantum states with O(n2)-size classical representations [Gottesman98]. A famous

early result in quantum computation was the Gottesmann-Knill theorem, which states that

quantum circuits composed entirely of a family of unitaries called the ‘Clifford gates’ are

efficiently classically simulable [AG04], since all they can produce are stabilizer states.

With quantum Monte Carlo approach above, [Bennink&17] presents a new algo-

rithm we call ‘stabilizer propagation’ that extends the capabilities of the Gottesmann-Knill

theorem. The new algorithm samples from a random variable whose expectation is the

probability of seeing a particular outcome at the end of any quantum circuit. Furthermore,

if the circuit has size s, then we can sample from the random variable in time poly(s).

However, the number of samples required scales exponentially in the number of non-Clifford

unitaries and non-stabilizer states.

In this chapter we present the two algorithms from [RLCK19], which have some sim-

ilarities to stabilizer propagation. Rather than using a collection of efficiently representable

quantum states {|φi〉} as a starting point for a Monte Carlo strategy, the algorithms lever-

age n-qubit tensor products of Pauli matrices. These Pauli matrices can be propagated

through the circuit from start to finish - we call this Schrödinger propagation, or they can

be propagated through the circuit in reverse - we call this Heisenberg propagation. We find

that these algorithms have some extremely surprising properties.

First, Schrödinger propagation and Heisenberg propagation can simulate Clifford

circuits in linear time: if the circuit has n qubits and m gates then the runtime is O(n+m).

This is surprising because the previously best known classical algorithms [AG04] require

O(nm + n3) time (or O(nm + n2) depending on the situation). The catch is that the
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algorithms in [RLCK19] perform a much weaker notion of simulation: instead of calculating

output probabilities exactly, they merely compute an ε-error estimate of the probability.

Second, Schrödinger propagation and Heisenberg propagation can simulate non-

stabilizer states. In fact, Heisenberg propagation does not care about the initial state at all,

provided it is separable into constant-size pieces. On the other hand, Schrödinger propaga-

tion can simulate a family of states called ‘hyper-octahedral states’ which contains states

that are not probabilistic mixtures of stabilizer states. Even more surprisingly, Schrödinger

propagation requires exponentially fewer samples if the input states are noisy.

Finally, the runtime of these algorithms is given by a quantity called the ‘stabilizer-

norm’, which was originally constructed as a lower bound for stabilizer propagation [HC16].

Therefore, the family of unitaries and quantum states simulable by Schrödinger propagation

and Heisenberg propagation is strictly larger than that of stabilizer propagation. Many of

the odd properties of these new algorithms stem from the properties of the stabilizer norm.

The algorithms in [RLCK19] join a large family of Monte Carlo approaches for

simulating quantum circuits dominated by Clifford gates. These algorithms are very useful

for performing numerical simulations of quantum error correction. Prior to [Bennink&17],

[BG16] gave a very fast algorithm for simulating circuits composed of noiseless Clifford gates

and a single non-Clifford gate. This algorithm has since been improved to support arbitrary

unitary quantum circuits [Bravyi&18], quantum circuits composed of qutrits [HL18], and

even later quantum circuits with noise [Seddon&20]. Each of these algorithms yields a new

measure of ‘non-stabilizerness’ in bounding its runtime, and has advantages and disadvan-

tages compared to the others.
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Chapter 2

Simplified Approximate Counting and Amplitude
Estimation

This chapter is based on [AR19]. Scott Aaronson had the original idea for an

algorithm that refines a relative-error estimate for an amplitude. Patrick Rall developed the

algorithm that makes the initial rough guess that is required to ‘jump-start’ Dr. Aaronson’s

procedure, and wrote the error analysis of the protocols. Dr. Aaronson contributed the

majority of the prose.

Approximate counting is one of the most fundamental problems in computer science.

Given a list of N items, of which K > 0 are marked, the problem is to estimate K to within

a multiplicative error of ε. One wants to do this with the minimum number of queries,

where a query simply returns whether a given item i ∈ [N ] is marked.

Two decades ago, Brassard, Høyer, Mosca, and Tapp [BHMT00] gave a celebrated

quantum algorithm for approximate counting, which uses O
(
ε−1
√
N/K

)
queries. This

is tight, matching a lower bound of Nayak and Wu [NW98], and is a quadratic speedup

over the best possible classical query complexity of Θ
(
ε−2(N/K)

)
. This is the same type

of quantum speedup as provided by the famous Grover’s algorithm [Grover96], for finding

a marked item in a list of size N , and indeed the BHMT algorithm builds on Grover’s

algorithm.

Curiously, though, the BHMT algorithm was not just a simple extension of Grover’s
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algorithm to a slightly more general problem (approximate counting rather than search).

Instead, BHMT made essential use of the Quantum Fourier Transform (QFT): a component

that appears nowhere in Grover’s algorithm, and that’s more commonly associated with the

exponential speedup of Shor’s factoring algorithm [Shor95]. Indeed, BHMT presented their

approximate counting algorithm as a sort of hybrid of Grover’s and Shor’s algorithms.

This raises an obvious question: is the QFT in any sense necessary for the quadratic

quantum speedup for approximate counting? Or can we obtain that “Grover-like speedup”

by purely Grover-like means?

In this paper we settle that question, by giving the first rigorous quantum approxi-

mate counting algorithm that’s based entirely on Grover iterations, with no QFTs or other

quantum-mechanical ingredients. Matching [BHMT00], the query complexity of our algo-

rithm is the optimal O
(
ε−1
√
N/K

)
, while the computational complexity exceeds the query

complexity by only an O(logN) multiplicative factor. Because of its extreme simplicity, our

algorithm might be more amenable than [BHMT00] or other alternatives to implementing

on near-term quantum computers. The analysis of our algorithm is also simple, employing

standard classical techniques akin to estimating the bias of a coin via many coin tosses.1

An approach broadly similar to ours was outlined by Grover [Grover97] in 1997, with

fuller discussion by Abrams and Williams [AW99] in 1999. The latter authors sketched how

to estimate the integral of a function over some domain, to additive error ε, using O(ε−1)

quantum queries. Crucially, however, neither Grover nor Abrams and Williams prove the

1Indeed, [BHMT00] also requires such classical techniques, since the QFT alone fails to reliably extract
the desired information from the Grover operator. By removing the QFT, we show that Grover and
estimation techniques alone can do the whole job. This gives a clear way to understand in what sense our
algorithm is “simpler.”
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correctness of their approach—among other issues, they assume that a probability can be

estimated to a desired precision without any chance of failure. Also, it is not clear how to

adapt their approaches to the broader problem of amplitude estimation.

As we were writing this paper, two other quantum algorithms for approximate

counting were announced that avoid the use of QFTs. Surprisingly, both algorithms differ

significantly from ours.

In April, Suzuki et al. [Suzuki&19] gave an O
(
ε−1
√
N/K

)
-query quantum al-

gorithm that first collects samples from various Grover iterations, and then extracts an

approximate value of K via maximum likelihood estimation. Finding the maximum of the

likelihood function, according to Suzuki et al., incurs a log 1
ε computational overhead. More

importantly, even if we focus only on query complexity, Suzuki et al. do not prove their algo-

rithm correct. Their analysis gives only a lower bound on the error, rather than an upper

bound, so is supplemented by numerical experiments. By contrast, our analysis is fully

rigorous. On the other hand, the Suzuki et al. algorithm has the interesting feature that its

invocations of Grover’s algorithm are nonadaptive (i.e., can be performed simultaneously),

whereas our algorithm requires adaptivity.

In July, Wie [Wie19] sketched another O
(
ε−1
√
N/K

)
-query, QFT-free quantum

approximate counting algorithm. Wie’s algorithm is based on Hadamard tests, which

require the more expensive “controlled-Grover” operation rather than just bare Grover iter-

ations. Replacing the QFT with Hadamard tests is called “iterative phase estimation,” and

was suggested by Kitaev [Kit95]. Wie modifies iterative phase estimation in order to apply

it to the BHMT algorithm. Unfortunately, and like the previously mentioned authors, Wie

gives no proof of correctness. Indeed, given a subroutine that accepts with probability
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p, Wie (much like Abrams and Williams [AW99]) simply assumes that p can be extracted

to the requisite precision. There is no analysis of the overhead incurred in dealing with

inevitable errors. Again, in place of analysis there are numerical experiments.

One reason why approximate counting is of interest in quantum computation is

that it generalizes to a technique called amplitude estimation. Amplitude estimation is a

pervasive subroutine in quantum algorithms, yielding for example faster quantum algorithms

for mean estimation, estimation of the trace of high-dimensional matrices, and estimation of

the partition function in physics problems [Mon15]. In general, amplitude estimation can

upgrade almost any classical Monte-Carlo-type estimation algorithm to a quantum algorithm

with a quadratic improvement in the accuracy-runtime tradeoff. Once we have our quantum

approximate counting algorithm, it will be nearly trivial to do amplitude estimation as well.

In Section 2.2 we present our main result—the QFT-free approximate counting

algorithm and its analysis—and then in Section 2.3 we generalize it to amplitude estimation.

We conclude in Section 2.4 with some open problems.

2.1 Main Ideas

Our algorithm for approximate counting mirrors a standard classical approach for

the following problem: given a biased coin that is heads with probability p, estimate p.

First, for k = 0, 1, 2, . . . the coin is tossed 2k times, and stop at the k where heads was

observed least once. This gives a rough guess for p, up to some multiplicative constant.

Second, this rough guess is improved to the desired 1+ε approximation via more coin tosses.

Of course, we’d like to use Grover’s algorithm [Grover96] to speed up this classical

approach quadratically. Grover’s algorithm can be seen as a special ‘quantum coin,’ which
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works as follows. If K out of N items are marked, then define θ := arcsin
√
K/N to be the

‘Grover angle.’ For any odd integer r, Grover’s algorithm lets us prepare a coin that lands

heads with probability p = sin2(rθ), by making O(r) queries to the oracle.

The key idea of our algorithm is to use this ‘Grover coin’ repeatedly, in a manner

akin to binary search—adaptively varying the value of r in order to zero in on the correct

value of θ and hence K. In more detail, suppose that θ has already been narrowed down

to the range [θmin, θmax]. Then in a given iteration of the algorithm, the goal is to shrink

this range by a constant factor, either by increasing θmin or by decreasing θmax. To do so,

we need to rule out one of the two possibilities θ ≈ θmin or θ ≈ θmax. This, in turn, is done

by finding some value of r that distinguishes the two possibilities, by making θ ≈ θmin and

θ ≈ θmax lead to two nearly-orthogonal quantum states that are easy to distinguish by a

measurement.

But why should such a value of r even exist—and if it does, why should it be small

enough to yield the desired query complexity? Here we need a technical claim, which

we call the “Rotation Lemma” (Lemma 2.2). Consider two runners, who race around and

around a circular track at differing constant speeds (corresponding to θmin and θmax). Then

informally, the Rotation Lemma upper-bounds how long we need to wait until we find one

runner reasonably close to the start or the midpoint of the track, while the other runner

is reasonably close to the one-quarters or three-quarters points. Here we assume that the

ratio of the runners’ speeds is reasonably close to 1. We ensure this property with an initial

preprocessing step, to find bounds θmin ≤ θ ≤ θmax such that θmax/θmin ≤ 1.65.

Armed with the Rotation Lemma, we can zero in exponentially on the correct

value of θ, gaining Ω(1) bits of precision per iteration. The central remaining difficulty
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is to deal with the fact that our ‘Grover coin’ is, after all, a coin—which means that each

iteration of our algorithm, no matter how often it flips that coin, will have some nonzero

probability of guessing wrong and causing a fatal error. Of course, we can reduce the

error probability by using amplification and Chernoff bounds. However, amplifying näıvely

produces additional factors of log( 1
ε ) or log log( 1

ε ) in the query complexity. To eliminate

those factors and obtain a tight result, we solve an optimization problem to find a carefully-

tuned amplification schedule, which then leads to a geometric series for the overall query

complexity.

2.2 Approximate Counting

We are now ready to state and analyze our main algorithm.

Theorem 2.1. Let S ⊆ [N ] be a nonempty set of marked items, and let K = |S|. Given

access to a membership oracle to S and ε, δ > 0, there exists a quantum algorithm that

outputs an estimate K̂. The output K̂ satisfies

K(1− ε) < K̂ < K(1 + ε)

with probability at least 1−δ. There exists a function Q(N,K, ε, δ) ∈ O
(√

N/Kε−1 log(δ−1)
)

such that the algorithm makes fewer than Q(N,K, ε, δ) queries whenever the estimate is ac-

curate. The algorithm needs O(logN) qubits of space.

Proof. The algorithm is as follows.

——————————————
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Algorithm: Approximate Counting

Inputs: ε, δ > 0 and an oracle for membership in a nonempty set S ⊆ [N ].

Output: An estimate of K = |S|.

We can assume without loss of generality that K � N , for example by padding out the

list with 106N unmarked items. Let θ := arcsin
√
K/N ; then since K/N ≤ (106 + 1)−1, we

have θ ≤ 0.001.

Let U be the membership oracle, which satisfies U |x〉 = (−1)x∈S |x〉. Also, let |ψ〉

be the uniform superposition over all N items, and let G := (I − 2|ψ〉〈ψ|)U be the Grover

diffusion operator.

1. For k := 0, 1, 2, . . .:

(a) Let rk be the largest odd integer less than or equal to 1.05k. Prepare the state

G(rk−1)/2|ψ〉 and measure. Do this at least 5000 · ln(5/δ) times.

(b) If a marked item was measured ≥ 95% of the time, exit the loop on k =: kend.

2. Initialize θmin := 0.9 · 1.05−kend and θmax := 1.65 · θmin. Then, for t := 0, 1, 2, . . .:

(a) Use Lemma 2.2 to choose rt.

(b) Prepare the state G(rt−1)/2|ψ〉 and measure. Do this at least 250 · ln
(
δ−1
t

)
times,

where δt := (δε/65) · (0.9)−t.

(c) Let γ := θmax/θmin− 1. If a marked item was measured at least 12% of the time,

set θmin := θmax/(1 + 0.9γ). Otherwise, set θmax := (1 + 0.9γ)θmin.

(d) If θmax ≤ (1 + ε/5)θmin then exit the loop.

3. Return K̂ := N · sin2 (θmax) as an estimate for K.
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——————————————

The algorithm naturally divides into two pieces. First, step 1 computes an “initial

rough guess” for the angle θ (and hence, indirectly, the number of marked items K), accurate

up to some multiplicative constant, but not necessarily 1 + ε/5. More precisely, step 1

outputs bounds θmin and θmax, which are supposed to satisfy θmin ≤ θ ≤ θmax and satisfy

θmax/θmin ≤ 1.65. Next, step 2 improves this constant-factor estimate to a (1 + ε/5)-factor

estimate of θ, yielding a (1 + ε)-factor estimate of K.

Both of these steps repeatedly prepare and measure the following quantum state

[Grover96]:

G(r−1)/2|ψ〉 =
sin(rθ)√

K

∑
x∈S
|x〉+

cos(rθ)√
N −K

∑
x 6∈S

|x〉. (2.1)

Note that, if this state is measured in the computational basis, then the probability of

observing a marked item is sin2(rθ). This circuit requires O(r) queries and needs O(logN)

qubits to store |ψ〉.

In what follows, we’ll first prove that step 1 indeed returns a constant-factor 1.65

approximation to θ with probability ≥ 1 − δ/2. When it succeeds at this, we show that

its query complexity is also O
(√

N/K log
(
δ−1
))

. Next, we show that step 2 improves the

estimate to a (1+ε/5)-factor approximation with probability ≥ 1−δ/2, and deterministically

requires an additional O
(√

N/Kε−1 log
(
δ−1
))

. The total failure probability is ≤ δ/2 +

δ/2 = δ.

Correctness of step 1. First, we describe the ideal behavior: we want to terminate at a kend

such that the resulting bounds θmin, θmax are accurate. Let k0 be given by:

k0 := the largest integer such that θ · 1.05k0 ≤ 0.9 (2.2)
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Ideally, for values of k satisfying 0 ≤ k ≤ k0, we do not terminate. Then we might

terminate at k0 + 1, k0 + 2, etc., but if we reach k0 + 10 then we definitely terminate there.

Given that we have k0 + 1 ≤ kend ≤ k0 + 10, we derive:

kend − 10 ≤ k0 ≤ kend − 1 (2.3)

θ · 1.05kend−10 ≤ θ · 1.05k0 ≤ 0.9 ≤ θ · 1.05k0+1 ≤ θ · 1.05kend (2.4)

0.9 · 1.05−kend ≤ θ ≤ 0.9 · 1.05−kend · 1.0510 (2.5)

≤ 0.9 · 1.05−kend · 1.65 (2.6)

We have proved that in the ideal case we have θ ∈ [θmin, θmax]. Also see how θmax/θmin =

1.65. Next we move on to demonstrating that this ideal case occurs with probability ≥

1− δ/2. The proof splits into two cases: terminating too late and terminating too early.

We show that we do not terminate too late: if we reach k = k0 + 10, then we

terminate there with probability ≥ 1− δ/5. Since rk is obtained by rounding downward to

the nearest odd number, we can bound the rounding error:

rk0+10 ≥ 1.05k0+10 − 2 (2.7)

1.58 ≥ 0.9 · 1.0510 ≥ 1.05k0+10θ ≥ 0.9 · 1.0510 ≥ 1.396 (2.8)

sin2(rk0+10θ) ≥ sin2((1.05k0+10 − 2)θ) ≥ 0.99 · sin2(1.05k0+10θ). (2.9)

In the final equation we leverage that, on the interval [1.396, 1.58], we have that sin2(x) is

increasing and that sin2(x − 0.002) > 0.99 · sin2(x). We also use that θ < 0.001, and that

the error in sin2(rθ) due to rounding r only gets better with decreasing θ.
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From this we conclude sin2(rk0+10θ) ≥ 0.99 · sin2(1.396) ≥ 0.96. We see that:

Pr[fail to terminate at k = k0 + 10] = Pr[fraction of marked items ≤ 95%] (2.10)

≤ exp
(
−2 · 5000 · (0.96− 0.95)

2
ln(5/δ)

)
(2.11)

= exp(− ln(5/δ)) = δ/5 (2.12)

So all that remains to show is that we do not terminate too early: for all k ≤ k0 we

do not see enough heads. Abbreviate pk = sin2(rkθ). For this calculation we demand the

tighter version of the Chernoff-Hoeffding theorem: assuming pk < 95%, if we toss coin with

bias pk a total of m times, then the probability we see more than 95% heads is bounded by:

Pr[fraction observed heads ≥ 95%] ≤ exp(−mD(95%||pk)) (2.13)

where D(95%||pk) is the Kullback-Leibler divergence of two Bernoulli trials, given by:

D(95%||pk) = (95%) ln
95%

pk
+ (1− 95%) ln

1− 95%

1− pk
(2.14)

With m = 5000 ln(5/δ), we can now bound:

Pr[terminate at k] ≤ exp(−mD(95%||pk)) (2.15)

=

[(
95%

pk

)−95%(
5%

1− pk

)−5%
]m

(2.16)

≤
[
(95%)−95%(5%)−5%

]m
· pm·95%
k (2.17)

≤ 1.22m · pm·95%
k (2.18)

Next, we plug in pk = sin2(rkθ) ≤ (rkθ)
2 ≤ (θ · 1.05k)2, and use the union bound to bound
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the probability that we terminate at or before k0:

Pr[terminate ≤ k0] =

k0∑
k=0

Pr[terminate at k] (2.19)

≤ 1.22m ·
k0∑
k=0

(θ · 1.05k)1.9m (2.20)

k0∑
k=0

(θ · 1.05k)1.9m = θ1.9m ·
k0∑
k=0

(1.051.9m)k (2.21)

= θ1.9m · (1.051.9m)k0+1 − 1

1.051.9m − 1
(2.22)

≤
(
θ · 1.05k0

)1.9m · 1.051.9m

1.051.9m − 1
(2.23)

≤ 0.91.9m · 1.01 (2.24)

Pr[terminate ≤ k0] ≤
[
1.22 · 0.91.9

]m · 1.01 (2.25)

≤ [0.9984]
5000 ln(5/δ) · 1.01 (2.26)

≤
[
e−1
]ln(5/δ) · 1.01 (2.27)

= e− ln(5/δ) = (δ/5) · 1.01 ≤ δ/4 (2.28)

The probability we terminate too early is ≤ δ/4, and the probability we terminate too late

is ≤ δ/5, so the probability that the first step has the ideal behavior is ≥ 1− δ/2.

Query complexity of step 1. When the first step behaves ideally, then it terminates at

kend = k0 + 10 at the latest. Since another way of writing k0 is k0 = blog1.05(0.9/θ)c, we

have

kend∑
k=0

rk ≤
k0+10∑
k=0

1.05k ≤ 1.05k0+11 − 1

1.05− 1
∈ O(1.05k0) ≤ O(θ−1) (2.29)

Since at each iteration we run O(log(δ−1)) circuits, the total complexity in the ideal case is

O(θ−1 log(δ−1)) = O(
√
N/K log(δ−1)).
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Correctness of step 2. Let γ := θmax/θmin−1. By definition, the θmin, θmax initialized at the

beginning of step 2 satisfy γ = 1.65−1 = 0.65 ≤ 0.7. We also see that θmax ≤ 1.65θ ≤ 0.002,

so we satisfy the conditions of Lemma 2.2. The coin described in the lemma is implemented

by measuring the state G(r−1)/2|ψ〉.

Each iteration of step 2 will modify θmin or θmax in order to reduce γ by exactly a

factor of 0.9. Each iteration preserves θmin ≤ θ ≤ θmax with high probability. When the

algorithm terminates we have θmax/θmin ≤ 1 + ε/5 which implies that any value θ̂ between

θmin and θmax satisfies (1 − ε/5)θ ≤ θ̂ ≤ (1 + ε/5)θ as desired. A simple calculation2

shows that these multiplicative error bounds on the estimate for θ guarantee the desired

(1− ε)K ≤ K̂ ≤ (1 + ε)K.

We start with t = 0, so at the beginning of step t we have γt = 0.65 · 0.9t. Let T ,

the iteration after which we terminate in step 2, be given by:

T := the largest integer satisfying γT = 0.65 · (0.9)T ≥ ε

5
(2.30)

This way, after the T ’th step we have γT+1 ≤ ε/5, so we stop. (Note that there are T + 1

total iterations.) For convenience we define b := 1/0.9 ≈ 1.11. Note that b > 1, which

makes logb(x) behave intuitively. Then:

T ≤ logb

(
3.25

ε

)
(2.31)

We used Lemma 2.2 to guarantee that the failure probability at the t’th iteration

is at most δt := (δε/65) · (0.9)−t = (δε/65) · bt. By the union bound, the overall failure

2Show 1 − ε ≤ sin2(θ(1 + ε/5))/ sin2(θ) ≤ 1 + ε by Taylor expanding sin2(θ(1 + ε/5))/ sin2(θ) around
ε = 0 and truncating the series to obtain bounds.
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probability is then at most:

T∑
t=0

δt =
δε

65

T∑
t=0

bt ≤ δε

65

bT+1 − 1

b− 1
≤ δε

65

b

b− 1

3.25

ε
=
δ

2
(2.32)

Query complexity of step 2. From Lemma 2.2, we know that rt ∈ O(θ−1γ−1
t ). Recall that

γt = 0.65 · b−t. Each step makes O(ln(δ−1
t )) queries. So the total query complexity is given

by:

O

(
T∑
t=0

1

θ

1

γt
ln

(
1

δt

))
≤ O

(
1

θ

T∑
t=0

bt
[
ln

(
1

δ

)
+ ln

(
1

ε

)
− t ln (b)

])
(2.33)

≤ O

(
1

θ
bT ln

(
1

δ

)
+

1

θ

T∑
t=0

bt
[
ln

(
1

ε

)
− t ln (b)

])
(2.34)

≤ O

(√
N

K

1

ε
ln

(
1

δ

))
+O

(
1

θ

T∑
t=0

bt
[
ln

(
1

ε

)
− t ln (b)

])
(2.35)

The first term is the desired complexity, so all that remains to show is that the second term

is dominated by the first term. To do so, we compute some bounds on T :

T + 1 ≥ logb

(
3.25

ε

)
(2.36)

ln(b)(T + 1) ≥ ln(b)
ln
(

3.25
ε

)
ln(b)

= ln

(
3.25

ε

)
≥ ln

(
1

ε

)
(2.37)
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Now we bound the second term, dropping the 1/θ. To aid intuition, recall that b > 1.

T∑
t=0

bt
[
ln

(
1

ε

)
− t ln (b)

]
= ln

(
1

ε

)
bT+1 − 1

b− 1
− ln (b)

b

(b− 1)2

[
TbT+1 − (T + 1)bT + 1

]
(2.38)

≤ ln

(
1

ε

)
bT+1

b− 1
+ ln (b)

b

(b− 1)2

[
−TbT+1 + (T + 1)bT

]
(2.39)

= ln

(
1

ε

)
bT+1

b− 1
+ ln (b)

b

(b− 1)2

[
bT+1 − (T + 1)bT+1 + (T + 1)bT

]
(2.40)

= ln

(
1

ε

)
bT+1

b− 1
+ ln (b)

b

(b− 1)2

[
bT+1 − (T + 1)bT (b− 1)

]
(2.41)

= ln

(
1

ε

)
bT+1

b− 1
− ln (b) (T + 1)

bT+1

b− 1
+ ln (b)

bT+2

(b− 1)2
(2.42)

≤ ln

(
1

ε

)
bT+1

b− 1
− ln

(
1

ε

)
bT+1

b− 1
+ ln (b)

bT+2

(b− 1)2
(2.43)

= ln (b)
bT+2

(b− 1)2
∈ O

(
1

ε

)
(2.44)

We note that this algorithm can also be used to determine if there are no marked

items. If there is at least one marked item, then θ ≥ arcsin
√

1/N . That means, that there

must be some point in step 1(b) where we are likely to see enough marked items. If we fail

to see enough marked items then, then we must have K = 0 with high probability.

Next we prove Lemma 2.2, which constructs a number of rotations r such that when

θ ≈ θmax it is very likely to see a marked item, and when θ ≈ θmin it is very unlikely to see

a marked item.

Lemma 2.2. Rotation lemma. Say we are given θmin, θmax such that 0 < θmin ≤ θ ≤

θmax ≤ 0.002 and θmax = (1 + γ) · θmin for some γ ≤ 0.7. Then we can calculate an odd
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integer r ∈ O(θ−1γ−1) such that the following is true: Consider tossing a coin that is heads

with probability sin2(rθ) at least 250 · ln(δ−1) times, and subsequently

1. if more than 12% heads are observed set θmin to θmax/(1 + 0.9γ),

2. and otherwise set θmax to (1 + 0.9γ)θmin.

This process fails to maintain θmin ≤ θ ≤ θmax with probability less than δ.

Proof. We compute r as follows (when rounding, ties between integers can be broken arbi-

trarily):

∆θ := θmax − θmin (2.45)

k := the closest integer to
θmin

2∆θ
(2.46)

r := the closest odd integer to
πk

θmin
(2.47)

First we show that rθmin ≈ πk and rθmax ≈ πk + π
2 . We notice some basic facts about ∆θ

following from θmax = (1 + γ) · θmin:

∆θ

θmin
= γ (2.48)

∆θ

θmax
= 1− 1

1 + γ
(2.49)

Now we bound the rounding errors on k and r:

∣∣∣∣k − θmin

2∆θ

∣∣∣∣ ≤ 1

2
(2.50)∣∣∣∣r − πk

θmin

∣∣∣∣ ≤ 1 (2.51)
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We arrive with bounds on rθmin and rθmax:

|rθmin − πk| ≤ θmin ≤ 0.002 (2.52)∣∣∣∣πk ∆θ

θmin
− π

2

∣∣∣∣ ≤ π

2
· ∆θ

θmin
=
γπ

2
(2.53)∣∣∣rθmax −

(
πk +

π

2

)∣∣∣ ≤ ∣∣∣∣πkθmax

θmin
−
(
πk +

π

2

)∣∣∣∣+ θmax (2.54)

=

∣∣∣∣(πk + πk
∆θ

θmin

)
−
(
πk +

π

2

)∣∣∣∣+ θmax (2.55)

≤ γπ

2
+ θmax (2.56)

≤ 0.7 · π
2

+ 0.002 ≤ 1.102 (2.57)

Given these bounds, we can examine the two cases when we fail to preserve θmin ≤ θ ≤ θmax

and demonstrate that they are unlikely: we could see many heads even though θ is small,

thus fail to preserve θmin ≤ θ, or we could see few heads even though θ is large, and thus

fail to preserve θ ≤ θmax.

First, suppose that θmin ≤ θ ≤ θmax/(1 + 0.9γ), so θ is near the bottom of the

interval. We are to show that it is unlikely that we see too many heads.

rθ ≥ rθmin ≥ πk − 0.002 (2.58)

rθ ≤ rθmax

1 + 0.9γ
(2.59)

≤ rθmax −
(
rθmax −

rθmax

1 + 0.9γ

)
(2.60)

≤ rθmax − r∆θ
θmax

∆θ

(
1− 1

1 + 0.9γ

)
(2.61)

≤ rθmax − r∆θ
1− 1

1+0.9γ

1− 1
1+γ

(2.62)

We find
1− 1

1+0.9γ

1− 1
1+γ

≥ 0.9: viewing the left hand side as a function of γ, this function increases
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with γ, so the smallest value occurs as γ → 0. Proceeding with the upper bound on rθ:

rθ ≤ rθmax − 0.9 · r∆θ (2.63)

≤ 0.1 · rθmax + 0.9 · rθmin (2.64)

≤ πk + 0.1 ·
(π

2
+ 1.102

)
+ 0.9 · 0.002 (2.65)

≤ πk + 0.27. (2.66)

Since −0.002 ≤ rθ − πk ≤ 0.27, we have sin2(rθ) ≤ 7.5%. So, the probability we fail is

bounded by:

Pr[see more than 12% heads] ≤ exp(−2 · (12%− 7.5%)2 · 250 ln(δ−1)) ≤ δ (2.67)

Now, we consider the case θmin(1 + 0.9γ) ≤ θ ≤ θmax where θ is near the top of the

interval. We must show that it is unlikely that we see too few heads.

rθ ≤ rθmax ≤ πk +
π

2
+ 1.102 ≤ πk + 2.68 (2.68)

rθ ≥ rθmin(1 + 0.9γ) (2.69)

= rθmin + 0.9 · r∆θ (2.70)

= 0.9 · rθmax + 0.1 · rθmin (2.71)

≥ 0.9 ·
(
πk +

π

2
− 1.102

)
+ 0.1 · (πk − 0.002) (2.72)

≥ πk + 0.9 · π
2
− 0.9 · 1.102− 0.1 · 0.002 (2.73)

≥ πk + 0.42. (2.74)

Since 0.42 ≤ rθ − πk ≤ 2.68 we have sin2(rθ) ≥ 16.5%. So, the probability we see too few

heads is bounded by:

Pr[see fewer than 12% heads] ≤ exp(−2 · (16.5%− 12%)2 · 250 ln(δ−1)) ≤ δ (2.75)
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We have shown correctness. Finally, we see that:

r ∈ O
(

k

θmin

)
≤ O

(
1

∆θ

)
≤ O

(
1

γθ

)
. (2.76)

2.3 Amplitude Estimation

We now show how to generalize our algorithm for approximate counting to ampli-

tude estimation: given two quantum states |ψ〉 and |φ〉, estimate the magnitude of their

inner product a = |〈ψ|φ〉|. We are given access to these states via a unitary U that pre-

pares |ψ〉 from a starting state |0n〉, and also marks the component of |ψ〉 orthogonal to |φ〉

by flipping a qubit. Recall that our analysis of approximate counting was in terms of the

‘Grover angle’ θ := arcsin
√
K/N . By redefining θ := arcsin a, the entire argument can be

reused.

Theorem 2.3. Given ε, δ > 0 as well as access to an (n+ 1)-qubit unitary U satisfying

U |0n〉|0〉 = a|φ〉|0〉+
√

1− a2|φ̃〉|1〉,

where |φ〉 and |φ̃〉 are arbitrary n-qubit states and 0 < a < 1,3 there exists an algorithm that

outputs an estimate â that satisfies

a(1− ε) < â < a(1 + ε)

and uses O
(
a−1ε−1 log(δ−1)

)
applications of U and U† with probability at least 1− δ.

Proof. The algorithm is as follows.

3Note that we can always make a real by absorbing phases into |φ〉, |φ̃〉.

48



——————————————

Algorithm: Amplitude Estimation

Inputs: ε, δ > 0 and a unitary U satisfying U |0n〉|0〉 = a|φ〉|0〉+
√

1− a2|φ̃〉|1〉.

Output: An estimate of a.

Let R satisfy R|0〉 = 1
1001 |0〉+

√
1−

(
1

1001

)2|1〉. Then:

U |0n〉|0〉 ⊗R|0〉 =
a

1001
|φ〉|00〉+ terms orthogonal to |φ〉|00〉 (2.77)

Define θ := arcsin a
1001 and we have 0 ≤ θ ≤ 0.001. Let the Grover diffusion operator G be:

G := −(U ⊗R)(I − 2|0n+2〉〈0n+2|)(U ⊗R)†(In+2 − 2(In ⊗ |00〉〈00|)) (2.78)

1. Follow steps 1 and 2 in the algorithm for approximate counting. An item is ‘marked’

if the final two qubits are measured as |00〉.

2. Return â := 1001 · sin (θmax) as an estimate for a.

——————————————

If we write

(U ⊗R)|0n+2〉 = sin θ|φ00〉+ cos θ|φ00⊥〉 (2.79)

where |φ00⊥〉 is the part of the state orthogonal to |φ00〉, then the Grover operator G rotates

by an angle 2θ in the two-dimensional subspace spanned by {|ψ00〉, |ψ00⊥〉}. Therefore:

G(r−1)/2(U ⊗R)|0n+2〉 = sin(rθ)|φ00〉+ cos(rθ)|φ00⊥〉 (2.80)
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making the probability of observing |00〉 on the last two qubits equal to sin2(rθ). This is

the quantity bounded by Lemma 2.2.

The remainder of the proof is identical to the one for approximate counting, which

guarantees that θmax is an estimate of θ up to a 1 + ε/5 multiplicative factor. A simple

calculation shows that 1001 · sin (θmax) is then an estimate of a up to a 1 + ε multiplicative

factor.

2.4 Open Problems

What if we limit the “quantum depth” of our algorithm? That is, suppose we

assume that after every T queries, the algorithm’s quantum state is measured and destroyed.

Can we derive tight bounds on the quantum query complexity of approximate counting in

that scenario, as a function of T? This question is of potential practical interest, since near-

term quantum computers will be severely limited in quantum depth. It’s also of theoretical

interest, since new ideas seem needed to adapt the polynomial method [Beals&98] or the

adversary method [Ambainis02] to the depth-limited setting (for some relevant work see

[JMdW13]).

Can we do approximate counting with the optimal O
(

1
ε

√
N
K

)
quantum query com-

plexity (and ideally, similar runtime), but with Grover invocations that are parallel rather

than sequential, as in the algorithm of Suzuki et al. [Suzuki&19]?
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Chapter 3

An Introduction to Block Encodings

This chapter is a review of [GSLW18], which is itself a culmination of a long line

of research. We also present some material from the appendices of [LC17, Rall20]. No text

in this chapter is copied verbatim from somewhere else.

Block encodings have completely revolutionized the way we think of quantum algo-

rithms. Before 2010 or so, the primary tools of the trade in quantum algorithms were phase

estimation [Kit95], the Trotter approximation [KKR04], and algorithms based on quantum

walks [Sze04]. All of these tools succeed in making quantum computers do something use-

ful while crucially making all the operations unitary. Block encodings lift the restriction

of unitarity, letting us consider arbitrary matrices. In later chapters, we find that this

makes the design of quantum algorithms incredibly natural and intuitive. Many of the most

modern quantum algorithms, e.g. those for ground state finding [LT20] and thermal state

preparation [CS16] make use of these techniques.

But it took a long time to get there. Block encoding techniques are a confluence of

many research results that emerged in the 2010s, most of them focusing on improving the

performance of Hamiltonian simulation. Two ideas form the core of the techniques: Linear

Combinations of Unitaries (LCU) and Singular Value Transformation (SVT). We briefly

outline their history here, although the references are in no way complete.
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LCUs appeared in [CW12] and was later refined by [Berry&14, BCK15] and [CKS15]:

the idea was to expand the Hamiltonian simulation operator eiHt into a sum of many uni-

taries. Such a sum can be implemented by preparing a control register with the weights of

the combination, applying the unitaries based on the control register, and then postselecting

the control register.

SVT originated from a generalization of Grover’s algorithm. In [YLC&14], explored

using arbitrary rotations rather than reflections, and found an improved algorithm for fixed

point search. Building on this idea, [LYC16, LC1606, LC1610, LC17] found that these

sequences of rotations could build polynomials, and that these polynomials could approxi-

mate the function eix. The task of finding angle sequences for approximation of functions

is called Quantum Signal Processing (QSP). QSP remains an active area of research, due

to numerical instabilities that appear in the process [Haah18, Chao&20]. The ‘qubitization’

trick [LC1610] observes that the polynomials can be applied to each of the eigenvalues of a

Hamiltonian by using the Jordan lemma (see e.g., [Sze04]) to split the Hilbert space into a

direct sum of many qubits,

All of these techniques as well as many of their applications were collected in

[GSLW18] and significantly refined. [GSLW18] is a seminal result of enormous importance,

in large part because it is extremely comprehensive. It will surely remain a standard ref-

erence for quantum algorithms going forward. However, its thorough and all-embracing

analysis comes at an enormous cost of readability. Personally, it took me countless at-

tempts at reading the paper to finally understand it. Since block encodings are such an

important technique in quantum algorithms, we require a more accessible introduction to

the subject.
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The review article [MRTC21] already tackles the challenge of making block encoding

techniques more accessible. Their approach is to focus on the applications of block encoding

techniques to eigenvalue thresholding, phase estimation, Hamiltonian simulation and matrix

inversion. Their technical discussion focuses on QSP - the synthesis of functions through

alternating phase rotations. This is very sensible since most applications of block encodings

center around transforming the input with a function.

We find that a greater emphasis could be placed on how block encodings create a

modular framework for the design of quantum algorithms. Rather than focusing on a single

technique, we show how all the techniques fit together into a neat framework. To do so, we

leverage some language from the programming languages community: we think of circuits

as symbolic expressions that ‘denote’ certain matrices. We find there exist ‘block encoding

circuits’ that can compile to regular quantum circuits. Second, rather than focusing on QSP,

we offer a simplified derivation of qubitization: showing how a sequence of angles that build

a function actually is applied to the singular values of a matrix. We find this also lets us

understand some of the more subtle aspects of SVT. Thus, this review article complements

the efforts of [MRTC21] to make [GSLW18] more accessible.

The key ingredient to escaping the restrictions of unitarity is postselection. While

quantum operations themselves are still unitary, postselecting a register to be |0〉 can force

a quantum computer to apply something non-unitary. To make use of this tool, we define a

notion of a quantum circuit with postselection built into it.

Definition 3.1. A postselective unitary quantum circuit is an expression of the fol-
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lowing form:

C := U (a unitary matrix on C2n) (3.1)

| |0〉 (an initial state on C2n) (3.2)

| C · C (matrix multiplication) (3.3)

| C ⊗ C (tensor product) (3.4)

| C† (adjoint) (3.5)

| I ⊕ C (control). (3.6)

The expressions |0〉 and U are called primitives.

Consider evaluating a circuit C and obtaining a matrix M as a result: then we say

C denotes M . Say M has shape 2n × 1 for some n: then M is really a state |ψ〉 and we

say C denotes the state |ψ〉. When we write C = M or C = |ψ〉, we mean that C denotes

M or |ψ〉.

Say C denotes M of shape 2n × 2m and C ′ denotes M ′ of shape 2n
′ × 2m

′
. If a

circuit contains an expression C · C ′, but 2m 6= 2n
′
, making matrix multiplication M ·M ′

undefined, then we say the circuit is invalid. A circuit can also be invalid if it contains an

expression I ⊕C where C does not denote something square. All circuits in this manuscript

are assumed to not be invalid.

The size or complexity of a circuit C is the number of bits required to write

down C.

A postselective circuit could be (|0〉)† ·H ·|0〉 = 〈0|H |0〉 = 1√
2
, which clearly denotes

something non-unitary. Of course, a quantum computer cannot actually tell us the matrix
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elements of a matrix denoted by a circuit C. Instead, we have the sampling access given to

us by quantum mechanics:

Definition 3.2. Born rule. Say that a quantum circuit C denotes a scalar α ∈ C. Observe

that |α|2 ≤ 1. Then, a quantum computer can output ‘heads’ with probability |α|2 and ‘tails’

with probability 1− |α|2.

Of course, the Born rule is a little bit stronger than this: if C denotes a normalized

quantum state
∑
i αi |i〉, then we can sample i with probability |αi|2. But the fact that

the state must be normalized disallows postselection, or at least complicates it. We find

that the above capability is enough to perform the amplitude estimation algorithm from

the previous chapter, which is in turn the only capability required by the next chapter on

estimating physical quantities.

Now we are ready to state the definition of block encoding circuits, which let us

perform all the operations that are natural for complex matrices.

Definition 3.3. A block encoding circuit is an expression of the following form:

B := M (any 2n × 2m matrix) (3.7)

or B ·B (matrix multiplication) (3.8)

or B +B (matrix addition) (3.9)

or B ⊗B (tensor product) (3.10)

or B† (adjoint / conjugate transpose) (3.11)

or p(B) (singular value transformation by a polynomial p). (3.12)
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The expression M is the only primitive. Notions of denotation, validity and size are just

as in Definition 3.1, with the exception the definition of the p(B) operation which is given

later in Theorem 3.17.

Just like a postselective quantum circuit, a quantum computer is able to sample

probabilities denoted by circuits denoting scalars. However, with postselective circuits we

had the guarantee that the circuit always evaluates to an amplitude: a ∈ C satisfying |a| ≤ 1.

But with block encoding circuits we have no such guarantee. Thus we need to establish a

notion of ‘scale’ that scales down the circuit to something with bounded spectral norm.

Theorem 3.4. Compiling Block Encoding Circuits. Say B is a block encoding circuit

of size s denoting M . Then there exists a constant α ∈ R+ and a quantum circuit C of size

poly(s) such that C denotes M/α.

The rest of this chapter is primarily dedicated to fleshing out the above theorem.

3.1 Defining Block Encodings

Postselective quantum circuits can already denote non-unitary matrices, and thereby

already have many of the capabilities required by block encodings built in. If the number of

initializations |0〉 and adjoint initializations 〈0| is not the same, then then can even denote

non-square matrices. But there are several other capabilities that they do not keep track of.

In the previous section we already mentioned scale: if C denotes M then we always have

|M | ≤ 1. But block encoding circuits can denote matrices with larger spectral norm.

There are three other features we would like to keep track of: accuracy, complexity

and ancilla count. Tracking accuracy is particularly important for singular value transfor-
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mation, since we often would like to transform our matrices by a function approximated

by a polynomial. Tracking complexity is key for analyzing the performance of quantum

algorithms, and keeping track of ancilla count can sometimes let us avoid uncomputation.

But what does the ‘ancilla count’ of a circuit C even mean? One way of answering

this question is to take all the |0〉’s pull them out to the very beginning of the circuit, and

to take all the 〈0|’s and pull them out to the very end of the circuit. We can always do this

due to the principle of deferred measurement. We end up with a circuit U(C) we call the

‘unitary sub-circuit’ that makes no use of the ‘|0〉’ primitive at all. Then, by counting the

number of |0〉’s and 〈0|’s we can reasonably define ancilla count.

Lemma 3.5. Principle of deferred measurement. Say C is a quantum circuit that

denotes a matrix M of shape 2n × 2m. Then there is a unitary sub-circuit U(C) that

denotes a unitary matrix U of shape 2max(n,m)+k(C)×2max(n,m)+k(C) for some ancilla count

k(C). This circuit U(C) makes no use of the |0〉 circuit component and has the property

that:

(〈0|⊗k(C) ⊗ 〈0|⊗max(m−n,0) ⊗ I⊗n) · U(C) · (|0〉⊗k(C) ⊗ |0〉⊗max(n−m,0) ⊗ I⊗m) denotes M
(3.13)

Proof. The principle of deferred measurement is established in [NC00].

It turns out that the notion of U(C) and k(C) will be very useful for transforming

old block encoding circuits into new ones. This view also helps us understand the term

‘block encoding’. Say C denotes a square matrix A of shape 2n × 2n, and U(C) denotes

UA of shape 2n+k(C) × 2n+k(C). We see that UA can be split into 2k(C) × 2k(C) blocks, each
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containing a matrix of size 2n × 2n. In this view, UA contains A in the top-left block:

UA =


A · . . . ·
· · . . . ·
...

...
. . .

...
· · . . . ·

 (3.14)

Having defined the ancilla count of a circuit, we are ready to give a definition of a

block encoding with all of the features.

Definition 3.6. Full-featured block encoding. Say A is a rectangular complex matrix.

Say CA is a postselective quantum circuit denoting a matrix Ã with the same shape. Say

α, ε are real numbers with α > 0 and ε ≥ 0. We say CA is an α-scaled ε-accurate block

encoding of A with complexity Q and k ancillae if:

|αÃ−A| ≤ ε, (3.15)

that is, αÃ is ε-close in spectral norm to A, and the size of CA is Q, and the ancilla count

of CA is k. Additionally:

• If ‘α-scaled’ is omitted we assume α = 1. We can also say ‘unscaled’ rather than

‘1-scaled’ to be explicit.

• If ‘ε-accurate’ is omitted we assume ε = 0. We can also say ‘exact’ rather than

‘0-accurate’ to be explicit.

• If ‘with complexity Q’ is omitted then the size of CA could be anything. We can also

say ‘with complexity at most Q’ or ‘with complexity O(Q)’ to make weaker claims

about the size of the circuit CA.

• Similarly, if ‘with l ancillae’ is omitted then the ancilla count could be anything.
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Working towards Theorem 3.4, we can already show how to construct exact block

encodings of arbitrary matrices M .

Theorem 3.7. Constructing a block encoding. Say M is 2n × 2m complex matrix.

Then there exists a max(1, |M |)-scaled block encoding of M with 1 ancilla.

Proof. Let M = UΣV be a singular value decomposition of M , where U, V are unitary and

Σ is a diagonal matrix with positive real elements. Let α := max(1, |M |) and Σ̄ := Σ/α,

and observe that |Σ| ≤ 1. We construct a circuit C which is a block encoding of Σ̄. Then

UCV is an α-scaled block encoding of M .

Since Σ̄ can be rectangular, we can select a computational basis with a varying

number of bits that still lets us sum over the diagonal. Let k := min(n,m), and let x ∈

{0, 1}k be an index. Then, let:

|x(m)〉 := |0〉⊗(m−k) ⊗ |x〉 (3.16)

|x(n)〉 := |0〉⊗(n−k) ⊗ |x〉 (3.17)

Which lets us write:

Σ̄ :=
∑
x

σ̄x |x(n)〉 〈x(m)| (3.18)

With this notation, we can construct C. We begin by making block encodings for

the σ̄x:

U(σ) :=

[
σ

√
1− σ2

√
1− σ2 −σ

]
(3.19)
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and observe that 〈0|U(σ) |0〉 = σ. Then, let:

UΣ̄ :=
∑
x

|x〉 〈x| ⊗ U(σ̄x) (3.20)

C := (|0〉⊗(n−k) ⊗ I⊗k ⊗ 〈0|)UΣ̄(〈0|⊗(m−k) ⊗ I⊗k ⊗ |0〉) (3.21)

We can build a quantum circuit for UΣ̄ directly via the ‘U ’ primitive, since we know all of

its matrix elements. We see that:

C = (|0〉⊗(n−k) ⊗ I⊗k)

(∑
x

|x〉 〈x| ⊗ 〈0|U(σ̄x) |0〉

)
(〈0|⊗(m−k) ⊗ I⊗k) (3.22)

=
∑
x

σ̄x(|0〉⊗(n−k) ⊗ |x〉)(〈0|⊗(m−k) ⊗ 〈x|) =
∑
x

σ̄x |x(n)〉 〈x(m)| = Σ̄ (3.23)

Notice that we can also make block encodings of scalars this way, by pretending it

is a 1 × 1 matrix. A complex scalar α = reiθ splits into a magnitude and a phase. The

phase can be handled by one of the U or V unitaries, whereas r is positive and real and is

handled by UΣ̄. We can then multiply a matrix by the scalar via a tensor product.

The method for constructing block encodings presented above only works for ma-

trices M that are small enough to write down in full. There are actually several methods

for constructing block encodings of larger matrices. This includes density matrices, POVM

operators, Gram matrices, sparse matrices with sparse-access oracles, and matrices recorded

in quantum data structures. These are detailed in [GSLW18] Section 4.2.

3.2 Block Encoding Circuit Algebra

In the previous section we showed how to implement the ‘M ’ primitive in Def-

inition 3.3. Continuing our work towards Theorem 3.4, in this section we show how to
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implement B ·B, B +B and B ⊗B via postselective quantum circuits.

Theorem 3.8. Algebra of block-encodings. For some set of indices i ∈ [n], say the cir-

cuits Ci denote αi-scaled εi-accurate block encodings of Ai with ki ancillae and complexities

Qi. Then:

• (Addition) There exists a circuit denoting a
∑
i αi-scaled

∑
εi-accurate block encoding

of
∑
iAi with (maxi(ki) + dlog2(n)e) ancillae and complexity

∑
iQi +O(maxi(ki)) +

O(log2(n)).

• (Multiplication) There exists a circuit denoting a (
∏
i αi)-scaled (

∏
i αi)

(∑
i
εi
αi

)
-

accurate block encoding of
∏
iAi with

∑
i ki ancillae and complexity at most

∑
iQi.

• (Tensor product) There exists a circuit denoting a (
∏
i αi)-scaled (

∏
i αi)

(∑
i
εi
αi

)
-

accurate block encoding of
⊗

iAi with
∑
i ki ancillae and complexity at most

∑
iQi.

Proof. (Addition) Say Ci denotes Ãi. Let α :=
∑
i αi, and ᾱi := αi/α. The circuit Cadd

requires a subcircuit Cprep, which denotes:

Cprep =
∑
i

√
ᾱi |i〉 (3.24)

where we have encoded the index |i〉 into dlog2(n)e qubits. We can build Cprep via any

unitary that features the state
∑
i

√
ᾱi |i〉 in the first column, requiring O(log2(n)) bits to

write down.

Then, let U(Ci) be the unitary sub-circuit of the block encoding Ci. Since the Ãi

all have the same shape 2n × 2m, we see that:

(〈0|⊗ki ⊗ 〈0|⊗max(m−n,0) ⊗ I⊗n) · U(Ci) · (|0〉⊗ki ⊗ |0〉⊗max(n−m,0) ⊗ I⊗m) = Ãi (3.25)
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If we let kmax := maxj(kj), then we can pad out each of these to Ū(Ci) = I⊗(kmax−ki)⊗U(Ci)

so that all the Ū(Ci) act on kmax+max(n,m) many qubits. With use of classical computation

via Toffoli gates as well as the controlled circuit I⊕ Ū(Ci), we can construct a circuit Cselect

denoting:

Cselect =
∑
i

|i〉 〈i| ⊗ Ū(Ci) (3.26)

Now we add the postselection bits to obtain Csum:

(C†prep ⊗ 〈0|
⊗kmax ⊗ 〈0|⊗max(m−n,0) ⊗ I⊗n) · Cselect · (|0〉⊗kmax ⊗ |0〉⊗max(n−m,0) ⊗ I⊗m ⊗ Cprep)

(3.27)

which denotes
∑
i ᾱiÃi. We claim that Csum is an α-scaled approximate block encoding of∑

iAi, given that |Ai − αiÃi| ≤ εi. This just follows from the triangle inequality:∣∣∣∣∣∑
i

Ai − α
∑
i

ᾱiÃi

∣∣∣∣∣ =

∣∣∣∣∣∑
i

Ai −
∑
i

αiÃi

∣∣∣∣∣ ≤∑
i

|Ai − αiÃi| ≤
∑
i

εi. (3.28)

(Multiplication) Here the circuit construction is much simpler. If Ci denotes Ãi,

then
∏
i Ci denotes

∏
i Ãi. If we let α :=

∏
i αi (not the sum, as in the addition case), then

all that remains to show is that:∣∣∣∣∣
n∏
i=1

Ai − α
n∏
i=1

Ãi

∣∣∣∣∣ ≤ α∑
i

εi
αi

(3.29)

We prove this by induction on n. The n = 1 case is trivial. Now we consider two terms:

|A1A2 − (α1Ã1)(α2Ã2)| = |A1A2 −A1(α2Ã2) +A1(α2Ã2)− (α1Ã1)(α2Ã2)| (3.30)

= |A1(A2 − α2Ã2) + (A1 − α1Ã1)(α2Ã2)| (3.31)

≤ α1ε2 + ε1α2 (3.32)

The inductive step follows by plugging into the above relation.
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(Tensor product) This just follows from the proof for multiplication: we can just

pad each of the circuits Ci with tensor products of identities and multiply them together.

The above theorem presents generalizations of results in Sections 4.3 and 4.4 in

[GSLW18]. Rather than focusing on pairwise addition, multiplication and tensor products,

it shows how the errors propagate when we combine n many sub-circuits this way. Note

that [GSLW18] also gives machinery for analyzing linear combinations where the coefficients

may be approximate. We assume that the scale factors of each of the sub-circuits are known

exactly, since this is usually the case.

3.3 Singular Value Transformation

This section is dedicated to the most complicated but also the most powerful tool

in Definition 3.3. Just writing down what it does is quite involved, so as an introduction we

present a version of it without the baggage of scale, accuracy or complexity.

Singular value transformation lets us transform block encoded matrices by poly-

nomials. The parity of the polynomial is central to how the transformation behaves. We

establish some vocabulary:

Definition 3.9. A polynomial in x is said to be even or even parity if all of the nonzero

terms have an even power of x. Similarly, it is odd if all the powers of x are odd. If a

polynomial is either odd or even we say it has fixed parity, otherwise it has mixed parity.

If p is even and q is odd or vice versa, then we say the polynomials have opposite parity.

Now we are almost ready to state a simplified version of the capabilities of singular

value transformation.
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Theorem 3.10. Simple singular value transformation. Say A is a matrix with sin-

gular value decomposition:

A =
∑
i

σi |li〉 〈ri| (3.33)

Say P (x) is a polynomial with fixed parity and degree d, and let:

P (A) :=
∑
i

P (σi) |li〉 〈ri| if P is odd (3.34)

P (A) :=
∑
i

P (σi) |ri〉 〈ri| if P is even. (3.35)

Suppose A has a block-encoding CA, and suppose P (x) is either PQ-completable or FG-

completable. Then P (A) has a block encoding that makes d uses of CA’s unitary sub-circuit.

This should give an overview of the capabilities of the operations, but in order to un-

derstand its limitations we need to understand what ‘PQ-completable’ and ‘FG-completable’

mean. In Section 3.3.1 we will show how the circuit for singular value transformation lets

us implement certain functions f(σ) of the singular values. In Section 3.3.2 we outline

how to ‘complete’ polynomials so that they fit into the special form of f(σ). Finally, in

Section 3.3.3, we give a full description of singular value transformation with notions of

accuracy, scale, complexity, and ancilla count.

3.3.1 Circuit Analysis

An enormous barrier to understanding singular value transformation is the qubiti-

zation technique from [LC1610]. A complete derivation is to be found in Section 3.2 of

[GSLW18], but it is enormously complicated. Singular value transformation can largely be

used without really understanding how it works in depth. But we find that making a simple

assumption on the block encoded matrix A makes the derivation significantly simpler for
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that special case. A deeper understanding lets us perform some ancilla saving tricks that

we discuss in Remark 3.19.

Theorem 3.11. Circuits for singular value transformation. Say d is a positive

integer and say f(σ) : [−1, 1]→ C is a function of the form:

f(σ) = 〈0| eiX arccos(σ)
d−1∏
j=1

eiZφjeiX arccos(σ) |0〉 (3.36)

for some phases φj with j ∈ [d− 1]. Say A is a matrix with singular value decomposition:

A =
∑
i

σi |li〉 〈ri| . (3.37)

and say furthermore that A has an unscaled exact block encoding CA. Then there exists a

circuit Cf(A) with d applications of U(CA) that is an unscaled exact block encoding of f(A),

where f(A) is defined as:

f(A) :=
∑
i

f(σi) |li〉 〈ri| if d is odd (3.38)

f(A) :=
∑
i

f(σi) |ri〉 〈ri| if d is even (3.39)

Furthermore, CA and Cf(A) have the same ancilla count.

Assumption. We will assume that A is square, full rank, and all the singular values σi

satisfy 0 < σi < 1. The theorem above holds regardless of this assumption, but the proof

becomes significantly more cumbersome. We focus on this special case because we feel there

is a need in the literature for a more pedagogical introduction to this technique.

Proof. Let φ̄k := φk − 3
2π mod 2π. Consider the quantum circuit:

(〈0| ⊗ I) · U (d)
A

d−1∏
j=1

(eiZφ̄j ⊗ I)U
(j)
A · (|0〉 ⊗ I) (3.40)
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Where U
(j)
A is UA when j is even and U†A when j is odd. We will show that this circuit

denotes a block-encoding of f(A). Let:

|l̄i〉 := |0〉⊗k |li〉 〈r̄i| := 〈0|⊗k 〈ri| (3.41)

Then, let |l̄⊥i 〉 and 〈r̄⊥i | be the unique states that satisfy:

UA |r̄i〉 = σi |l̄i〉+
√

1− σ2
i |l̄
⊥
i 〉 (3.42)

〈l̄i|UA = σi 〈r̄i|+
√

1− σ2
i 〈r̄
⊥
i | (3.43)

Their existence is guaranteed since by the fact that UA is unitary, the fact that 〈l̄i|UA |r̄i〉 =

σi. The assumption that 0 < σi < 1 guarantees uniqueness (it turns out that these states can

still be defined without this assumption, but this is pretty cumbersome to show explicitly).

Furthermore, we can show that the sets {|l̄i〉 , |l̄⊥i 〉} and {|r̄i〉 , |r̄⊥i 〉} of 2N vectors each are

an orthonormal basis (A is N ×N).

Given the action of UA on |l̄i〉 , |l̄⊥i 〉 , |r̄i〉 , |r̄⊥i 〉, we write UA in the following form:

UA =
∑
i

(
σi |l̄i〉 〈r̄i|+

√
1− σ2

i |l̄
⊥
i 〉 〈r̄i|+

√
1− σ2

i |l̄i〉 〈r̄
⊥
i | − σi |l̄⊥i 〉 〈r̄⊥i |

)
(3.44)

Since this is pretty hard to read, we use the following abuse of notation:

UA =
∑
i

[
σi |l̄i〉 〈r̄i|

√
1− σ2

i |l̄i〉 〈r̄⊥i |√
1− σ2

i |l̄⊥i 〉 〈r̄i| −σi |l̄⊥i 〉 〈r̄⊥i |

]
(3.45)

Next, we observe that the other terms in the quantum circuit have decompositions in terms

of |l̄i〉 , |l̄⊥i 〉 , |r̄i〉 , |r̄⊥i 〉 within this abuse of notation. This comes simply from the fact that
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I =
∑
i |li〉 〈li| =

∑
i |ri〉 〈ri|.

(eiZφ̄j ⊗ I) =
∑
i

[
eiφ̄j |l̄i〉 〈l̄i| 0

0 e−iφ̄j |l̄⊥i 〉 〈l̄⊥i |

]
=
∑
i

[
eiφ̄j |r̄i〉 〈r̄i| 0

0 e−iφ̄j |r̄⊥i 〉 〈r̄⊥i |

]
(3.46)

(|0〉 ⊗ I) =
∑
i

[
|l̄i〉

0

]
〈li| =

∑
i

[
|r̄i〉

0

]
〈ri| (3.47)

Expanding the terms in the circuit in this manner yields a series of matrix multiplications,

alternating in the |l̄i〉 , |l̄⊥i 〉 and |r̄i〉 , |r̄⊥i 〉 subspaces. While still somewhat verbose to expand

explicitly, it should still be clear that inserting the above expressions into the circuit (3.40)

and canceling the bras and kets yields:

(〈0| ⊗ I) · U (d)
A

d−1∏
j=1

(eiZφj ⊗ I)U
(j)
A · (|0〉 ⊗ I) denotes (3.48)

=
∑
i

[
1
0

]†
·

[
σi

√
1− σ2

i√
1− σ2

i −σi

]
d−1∏
j=1

[
eiφ̄j 0

0 e−iφ̄j

][
σi

√
1− σ2

i√
1− σ2

i −σi

]
·
[
1
0

]
(3.49)

· |li〉 〈ri| if d is odd or · |ri〉 〈ri| if d is even (3.50)

Notice also that we defined |l̄i〉 , |l̄⊥i 〉 , |r̄i〉 , |r̄⊥i 〉 in such a manner to make the matrix elements

of UA real, so while the conjugate transpose transforms |l̄i〉 〈r̄i| → |r̄i〉 〈l̄i| and so on, the

actual matrix elements σi,
√

1− σi remain the same, so we no longer need to care about the

alternating conjugate transpose. Finally, we make the observation that:[
σi

√
1− σi

√
1− σi −σi

]
=

[
1 0

0 −i

][
σi i

√
1− σ2

i

i
√

1− σ2
i σi

][
1 0

0 −i

]
(3.51)

= ei
3
4πeiZ

3
4πeiX arccos(σi)eiZ

3
4π (3.52)
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Substituting this into (3.49) yields:

=e
3d
2 π · 〈0| eiZ 3

4πeiX arccos(σi)eiZ
3
4π

d−1∏
k=1

eiZφ̄keiZ
3
4πeiX arccos(σi)eiZ

3
4π |0〉 (3.53)

=e
3(d+1)

2 π · 〈0| eiX arccos(σi)
d−1∏
k=1

eiZ(φ̄k+ 3
2π)eiX arccos(σi) |0〉 = e

3(d+1)
2 π · f(σi) (3.54)

So we see the circuit (3.40) implements f(A) up to an easily correctable global phase that

depends only on d.

3.3.2 Completing Polynomials

We have shown that we can transform the singular values of matrices by functions

of the form:

f(σ) = 〈0| eiX arccos(σ)
d−1∏
j=1

eiZφjeiX arccos(σ) |0〉 (3.55)

Selecting angles φj to make f(σ) have desired behavior is called quantum signal processing.

In this section we outline the results of this line of work, without going into much detail

with the derivations. A much more detailed review of this subject is given in [MRTC21].

We find that φj can be selected to make f(x) a variety of polynomials P (x) ∈ C[x].

It may be surprising that a form like f(x) might yield a polynomial, but this should be more

clear when looking at the most natural example of singular value transformation:

Example 3.12. Chebyshev polynomials. Let Td(σ) be the function we obtain when we

plug φj = 0 into f . If we let θ := arccos(σ), we see that:

Td(σ) = 〈0|
d∏
j=1

eiXθ |0〉 = 〈0| eiXdθ |0〉 = cos(nθ) (3.56)

Td(σ) = cos(n arccos(σ)) is exactly the definition of the Chebyshev polynomials of the first

kind.

68



The Chebyshev polynomials are a very special family of polynomials with a close

relationship to rotations. We can make a more general family of polynomials P (x) ∈ C[x],

but in some sense we need to preserve this relationship. This places several restrictions on

the polynomials we can build.

First, these polynomials must have fixed parity. Second, these polynomials must be

‘completable’, in the sense that there exists a Q(x) satisfying:

P (x) + (1− x2)Q(x) = 1 (3.57)

This stems simply from the fact that the matrix in the definition of f(x) must be unitary.

Indeed, Theorem 1 of [MRTC21] and Theorem 3 of [GSLW18], following a characterization

of [LYC16] find that:

eiX arccos(σ)
d−1∏
j=1

eiZφjeiX arccos(σ) =

[
P (σ) iQ(σ)

√
1− σ2

iQ∗(σ)
√

1− σ2 P ∗(σ)

]
(3.58)

Unitarity of the above matrix clearly imposes that constraint on P and Q. ‘Completion’

entails finding a suitable Q given a polynomial P . PQ-completion is one such method:

Theorem 3.13. PQ-completion. Say P (x) ∈ C[x] is a complex polynomial with degree d

and fixed parity. Then the following conditions are equivalent:

1. There exist phases φk with k ∈ [d− 1] and some phase φ0 such that P (x) = eiφ0f(x)

with f(x) obtained from the φk as in (3.55).

2. There exists a complex polynomial Q(x) with degree at most d and opposite parity to

P (x) such that for all real x with |x| ≤ 1:

P (x) + (1− x2)Q(x) = 1 (3.59)
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3. The following three conditions on P (x) hold:

• For all real x with |x| ≤ 1 we have |P (x)| ≤ 1.

• For all real x with |x| ≥ 1 we have |P (x)| ≥ 1.

• If P (x) has even parity, then for all real x we have P (ix)P (−ix)∗ ≥ 1,

Proof. The equivalence 1-2 is shown in Theorem 3 in [GSLW18], and the equivalence 2-3 is

Theorem 4.

Condition 3 of PQ-completion is very restrictive. In particular the condition that

even polynomials satisfy P (ix)P (−ix)∗ ≥ 1 is very difficult to ensure. FG-completion is a

technique that lets us specify the real part of P only, and let a completion method specify

the complex part. This lets us extend the capabilities of quantum signal processing to a

larger family of real polynomials.

The name FG-completion stems from the methods explored by [Haah18, Chao&20]

which involves a Laurent polynomial F (ω). If we let ω = ei arccos(σ), we find that:

Re[F (ω)] = Re

[
d∑

k=−d

cdω
d

]
=

d∑
k=−d

cd cos(d arccos(σ)) =

d∑
k=−d

cdT|d|(σ) (3.60)

So the polynomial F (ω) has a relationship with the Chebyshev expansion of P (x). Then we

proceed to find a Laurent polynomial G(ω) so that F (ω)F (1/ω) +G(ω)G(1/ω), explaining

the name ‘FG-completion’. We do not go into the technical details further, and simply state

the result.

Theorem 3.14. FG-completion. Say P (x) ∈ R[x] is a real polynomial with degree d and

fixed parity. Then the following conditions are equivalent:
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1. There exists a complex polynomial P̃ (x) of degree d such that P (x) = Re(P̃ (x)), and

the conditions in Theorem 3.13 hold for P̃ (x) and Q̃(σ) = 0

2. For all real x with |x| ≤ 1 we have |P (x)| ≤ 1.

Proof. This follows from Theorem 5 in [GSLW18], and the results of [Haah18, Chao&20].

Observe how the constraint on P (σ) with FG-completion is significantly less strin-

gent.

To let the definitions of completability play we well with scale, we introduce the

notion of completability on an interval. We need this to state the full-featured version of

singular value transformation.

Definition 3.15. Say α is a real number with α ≥ 1. Say the conditions in Theorem 3.13

hold for a polynomial P (x/α). Then we say P (x) is PQ-completable on [−α, α]. When

we omit ‘on [−α, α]’ we mean that α = 1.

Similarly we say P (x) is FG-completable on [−α, α] when the conditions in

Theorem 3.14 hold for P (x/α).

Theorems 3.13 and 3.14 merely assert when completion is possible. Actually finding

the angles is a completely separate task, which runs into numerical instability issues if not

done carefully.

Theorem 3.16. Angle finding. Say P is PQ-completable on [−α, α]. Then for any δ > 0

there exists a classical algorithm that, given the coefficients of P , computes approximate

versions of the φ0, φk in Theorem 3.13, such that the resulting f(x) satisfies |eiφ0f(x) −

P (x)| ≤ δ for all real x with |x| ≤ α.
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Say P is FG-completable on [−α, α]. Then for any δ > 0 there exists a classical

algorithm that, given given the coefficients of P , finds a PQ-completable polynomial P̃ on

[−α, α] as in Theorem 3.14 such that |Re(P̃ (x))− P (x)| ≤ δ for real x with |x| ≤ α.

Proof. This is the main subject of [Haah18, Chao&20].

3.3.3 Transforming Block Encodings by Polynomials

Armed with qubitization and quantum signal processing, we can re-state Theo-

rem 3.10 with all the features of block encodings stated in Definition 3.6. The primary

change is that we now keep track of accuracy and scale, using the robust singular value

transformation technique discussed in [GSLW18].

Theorem 3.17. Full-featured singular value transformation. Say A is a matrix and

P (x) is a fixed parity polynomial with degree d. Let P (A) be defined just like Theorem 3.10.

Suppose that for any ε > 0 there exists an α-scaled ε-accurate block encoding of

A with k ancillae and complexity Q(ε). Furthermore, suppose that P (x) is either PQ-

completable or FG-completable on [−α, α].

Then for any δ exists an unscaled δ-accurate block-encoding of P (A) with k′ ancillae

and complexity Q′. We have:

Q′ ∈ O
[
d ·Q

(
δ2α2

16d2

)]
(3.61)

If P (x) is PQ-completable on [−α, α] then k′ = k. If instead P (x) is FG-completable on

[−α, α] then k′ = k + 1.

Proof. In addition to Theorem 3.11, we also leverage the robustness of singular value trans-

formation discussed in Section 3.3 of [GSLW18].
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To construct a block encoding of P (A) when P (σ) is FG-completable, we leverage

the trick from Corollary 18 in [GSLW18]. Recall that FG-completion lets us make a block

encoding of P̃ (A) where Re(P̃ (σ)) = P (σ). By flipping the sign of all the φj , we can also

make a block encoding of P̃ ∗(A). Then P (A) = (P̃ (A) + P̃ ∗(A))/2.

The limitation that the polynomial is fixed parity stems from the fact that adding

together
∑
i p(σi) |li〉 〈ri| and

∑
i p(σi) |ri〉 〈ri| does not necessarily give the desired result.

Adding them together might not even be well defined if they have different shapes. But for

the special case of hermitian A, we have |ri〉 = |li〉, letting us drop this restriction:

Theorem 3.18. Singular value transformation of hermitian matrices by arbitrary

polynomials. Say A is a hermitian matrix, and say for every ε > 0 there is an α-scaled

ε-accurate block encoding of A with k ancillae and complexity Q(ε).

Now suppose P (x) is any polynomial with degree d. Let Pmax = maxx∈[−α,α] P (x).

Then for every δ > 0 there exists a 2Pmax-scaled δ-accurate block encoding of P (A) with

k + 2 ancillae and complexity Q′ where Q′ is bounded as in Theorem 3.17.

Proof. This is Theorem 56 of [GSLW18]. The trick is just to split P (x) into even and

odd parts, apply Theorem 3.17 to each of them, and then to add them together using

Theorem 3.8.

Finally, in Chapter 5, we will perform singular value transformation with an FG-

completable polynomial. This is possible with Theorem 3.17, but it requires adding an extra

ancilla qubit to combine P̃ (A) and P̃ ∗(A). We find that this extra ancilla can be avoided

with an additional trick.

73



Remark 3.19. Avoiding an extra ancilla with a special block encoding. Say P (x)

is FG-completable and a block encoding of A has 1 ancilla. Then using theorem 3.17 we can

make a block encoding of P (A) with 2 ancillae. But what if we really want to avoid adding

the extra ancilla?

This is possible if the unitary sub-circuit U(CA) denotes a unitary of the special

form:

∑
i

Vi ⊗ |li〉 〈ri| (3.62)

where the Vi are all single-qubit reflections. Then we can observe that the states appearing

in theorem 3.17 take the form:

|l̄i〉 := |0〉 |li〉 〈r̄i| := 〈0| 〈ri| (3.63)

|l̄⊥i 〉 = |1〉 |li〉 〈r̄⊥i | = 〈1| 〈ri| (3.64)

The fact that the first register of |l̄⊥i 〉 , |r̄⊥i 〉 is |1〉 is guaranteed by the fact that the block

encoding has only one ancilla. We could however still have |l̄⊥i 〉 = eiθ |1〉 |ri〉 and 〈r̄⊥i | =

eiθ
′ 〈1| 〈ri| for some unknown phases θ, θ′. Hermiticity of UA guarantees that these phases

vanish.

The circuit in Theorem 3.11 uses alternating applications of eiZφk and eiX arccos(σ),

finally projecting onto the |0〉 ⊗ I. In this situation we will instead project onto |+〉 ⊗ I:

(〈+| ⊗ I) · U (d)
A

d−1∏
j=1

(eiZφ̄j ⊗ I)U
(j)
A · (|+〉 ⊗ I) (3.65)

In the abuse of notation used in theorem X we can derive that:

(|+〉 ⊗ I) =
∑
i

1√
2

[
|l̄i〉

|l̄⊥i 〉

]
〈li| =

∑
i

1√
2

[
|r̄i〉

|r̄⊥i 〉

]
〈ri| (3.66)

74



Note that this would be untrue if the phases θ, θ′ were nonzero. The new circuit now denotes

f(A) where f(σ) is given by:

f(σ) := 〈+| eiX arccos(σ)
d−1∏
k=1

eiZφjeiX arccos(σ) |+〉 . (3.67)

Now we make use of Theorem 13 in [MRTC21], which states that expressions of the above

form can evaluate to FG-completable polynomials. One way of seeing this is to plug in

equation (3.58), to obtain:

f(σ) = 2Re(P̃ (σ)) + iRe(Q̃(x))
√

1− σ2 (3.68)

Now we simply select Re(P̃ (σ)) = P (σ) and Re(Q̃(σ)) = 0.

3.4 Constructing Polynomials

Theorem 3.17 draws its power from the fact that many functions can be approxi-

mated by polynomials. Polynomial approximation is already a well established field. One

of the most powerful tools for constructing these approximations is Jackson’s theorem.

Theorem 3.20. Jackson’s Theorem. Say f(x) is a continuous function on the interval

[−α, α]. Let ωf (δ) be the modulus of continuity of f(x), defined by:

ωf (δ) := sup
{
|f(x)− f(y)| where x, y ∈ [−α, α] such that |x− y| ≤ δ

}
. (3.69)

Then, for any positive integer d there exists a polynomial J(x) of degree at most d so that

for all x ∈ [−α, α]:

|J(x)− f(x)| ≤ 6ωf (α/d), (3.70)

Proof. This is proved in Chapter 1 of [Rivlin69]. The main idea is to construct J(x) via a

Chebyshev expansion of f(x), and then figuring out where to truncate.
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While Jackson’s theorem is very powerful, it does not suffice for some applications.

One such application is amplitude amplification, where we really want the degree to scale as

O(a−1 log(δ−1)) where a is a lower bound on the amplitude and δ is the success probability.

Applying Jackson’s theorem in this situation would yield a−1δ−1. Furthermore, Jackson’s

theorem does not always yield the best constant factors when used directly.

Fortunately, [LC17] develops a polynomial approximation specifically for applica-

tions like this that has excellent constant factor performance, and has the correct asymptotic

scaling.

Theorem 3.21. Approximation of the sign function. Let Ij(x) be the j’th modified

Bessel function of the first kind. Now, for an odd integer n and positive real k, let:

p
(k,n)
sign (x) :=

2ke−
k2

2

√
π

I0(k2

2

)
· x+

(n−1)/2∑
j=1

Ij

(
k2

2

)
(−1)j

(
T2j+1 (x)

2j + 1
− T2j−1 (x)

2j − 1

)
(3.71)

This polynomial is odd and of degree n. It approximates sign(x), defined by sign(x < 0) = −1

and sign(x > 0) = 1. For any κ ∈ [0, 1], let:

ε(k,n)
κ := max

[−1,−κ/2]∪[κ/2,1]
|sign(x)− p(k,n)

sign (x)| (3.72)

be the error of the approximation on [−1, 1] except a region around 0 of width κ. As n, k

increase, ε
(k,n)
κ strictly decreases. Moreover, for any δ, if we select:

k :=

√
2

κ

√
ln

(
8

πδ2

)
(3.73)

n := d
√

2dmax((ke)2/2, log(4/δ))e log(8/δ)e (3.74)

then ε
(k,n)
κ ≤ δ. Observe that n ∈ O

(
κ−1 log(δ−1)

)
.

Proof. This is a result in Appendix A of [LC17].
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We could also just increase k, n until the approximation is good enough to get a

tighter bound on the error, but since Ij(x) is challenging to evaluate numerically at high

precision, this might be pretty cumbersome.

The polynomial itself is not PQ- or FG-completable since it overshoots the interval

[−1, 1]. However, it can be scaled down by a factor of 1 + δ to make it FG-completable.

Now we briefly give some results that we will need for later chapters. Chapter 4

will require a polynomial that approximates a window function that indicates if the input

is in an interval [a, b].

Corollary 3.22. Window Polynomial. For any η > 0 and any a, b with −1 < a < b < 1,

there exists a FG-completable polynomial w(x) such that that for all functions f(x):∣∣∣∣∣
∫ 1

−1

f(x)w(x)dx−
∫ b

a

f(x)dx

∣∣∣∣∣ ≤ ηfmax (3.75)

Where:

fmax ≥ max
p<q

1

q − p

∫ q

p

f(x)dx (3.76)

The polynomial has degree O(η−1 log(η−1)).

Proof. By shifting, scaling, and adding together two copies of p
(k,n)
sign (x) from Theorem 3.21,

we can construct a polynomial that is ≤ η outside of [a, b] and ≥ 1− η inside [a, b], except

for two region of width η/2 near a and b. Since we require δ ∼ κ ∼ η, the degree is

O
(
κ−1 log(δ−1)

)
= O(η−1 log(η−1)).

Next, Chapter 5 will require a polynomial that performs ‘amplification’: if p is a

small probability, then A(p) ≈ 0. If p is a large probability, then A(p) ≈ 1.
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Corollary 3.23. Quantum Amplifying Polynomial. For any 0 < η, δ < 1/2 there exists

an FG-completable polynomial Aη→δ(x) of degree Mη→δ ∈ O
(
η−1 log(δ−1)

)
, satisfying:

if 0 ≤ x ≤ 1 then 0 ≤ Aη→δ(x) ≤ 1 (3.77)

if 0 ≤ x ≤ 1

2
− η then Aη→δ(x) ≥ 1− δ (3.78)

if
1

2
+ η ≤ x ≤ 1 then Aη→δ(x) ≤ δ. (3.79)

Proof. This can be achieved by shifting and scaling p
(k,n)
sign (x).
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Chapter 4

Estimation of Physical Quantities

This chapter is based on [Rall20]. Some techniques presented in [Rall20] were al-

ready presented in Chapter 3, and are not restated here.

A central goal of quantum algorithms is to aid in the study of large quantum

systems. It is well established, for example, that quantum computers can simulate the

dynamics of most Hamiltonians of interest [Berry&19]. Hamiltonian simulation algorithms,

sometimes combined with the quantum Fourier transform, have led to quantum algorithms

for some physical quantities, including correlation functions [Pedernales&14] and dynamical

linear response functions [RC18]. Both of these examples are crucial for the understanding

of phenomena in condensed matter physics like electron and neutron scattering [West75,

Sears84], conductivity and magnetization [DiVentra08].

Recent work in Hamiltonian simulation has yielded algorithms with exponential

improvements in accuracy [CKS15] over Trotterization and guarantee linear scaling with

the simulation time [Berry&19]. The strategies employed by these works can be neatly

encompassed in terms of ‘block encodings’ - a tool that allows quantum computers to rep-

resent non-unitary matrices. These block encodings can be built using linear combinations

of unitaries (LCUs) [BCK15, CKS15] and manipulated using quantum singular value trans-

formation [GSLW18]. In addition to providing new and better algorithms, block encodings

provide an intuitive and powerful framework for performing linear algebra on a quantum
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computer.

In this work we use block encodings along with amplitude amplification [BHMT00,

AR19, GGZW19] to construct quantum algorithms for some physical quantities: n-time

correlation functions, the local and non-local density of states, and dynamical linear response

functions. These algorithms are more versatile than previous works [Pedernales&14, RC18]

in that they can compute more general versions of the functions with greater accuracy.

The local and non-local density of states and linear response functions are all func-

tions of the energy f(E). We are usually interested in obtaining the general shape of

f(E) over a range of energies, i.e. in obtaining a ‘sketch’ of f(E). We show how to per-

form two sketching strategies from modern classical numerical condensed matter physics

[WWAF05, Holzner&11, Fan&18]. First, we show how to compute integrals of f(E) over

a range of energies:
∫ EB
EA

f(E)dE. Second, we show how to compute the moments of a

Chebyshev expansion of f(E): briefly assuming |E| ≤ 1 for ease of explanation, if Tn(E) is

the n’th Chebyshev polynomial of the first kind, then we show how to compute constants

cn such that

f(E) ≈ 1

π
√

1− E2
·
N∑
n=0

cnTn(E). (4.1)

This procedure is known as the kernel polynomial method [WWAF05] and is intuitively

similar to sketching a function by computing the first few coefficients in its Fourier series.

Very recent work [Rogg20] shows how similar methods can also perform point-estimates of

the density of states by approximating a delta function with a polynomial close to a narrow

Gaussian.

Algorithms that compute physical quantities often face barriers from complexity
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theory, since computing expectations of observables on ground states of Hamiltonians is

QMA-complete [KKR04]. This remains true even when severe restrictions are placed on

Hamiltonians [Bookatz12]. For this reason we employ strategies that sidestep these barriers.

For correlation functions, we do not provide algorithms for preparing ground states or other

states of interest, since the best algorithms for their preparation must use properties of the

particular Hamiltonian in question. Evaluating the density of states at particular energies

is #P-complete [BFS10], but sketching the density of states via integrals and Chebyshev

expansions is in BQP.

The structure of our chapter is as follows. In section 4.1 we present a lemma for

estimating the expectations of observables. In section 4.2 we employ these techniques to

study n-time correlation functions. If we have a set of observables Oi and times {ti} we

compute expectations of the form

〈O1(t1)O2(t2)...〉 (4.2)

employing the Heisenberg picture. In section 4.3 we outline quantum singular value trans-

formation and tools for computing Chebyshev moments and integrals over energy intervals.

In section 4.4 we employ these techniques to compute the density of states and the local

density of states. If H has eigenvalues {Ei} and dimension D then the density of states is:

ρ(E) =
1

D

∑
i

δ(Ei − E). (4.3)

Furthermore, say H is a Hamiltonian describing a particle with some set of positions

{~r} and position eigenstates {|~r〉}. If the eigenvectors of H are {|ψi〉}, then the local density
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of states is:

ρ~r(E) =
∑
i

δ(Ei − E)| 〈ψi|~r〉 |2 (4.4)

Finally in section 4.5 we show how to sketch linear response functions of the form

A(E) = 〈Bδ(E −H + E0)C〉 (4.5)

where E0 is the ground state energy of H and B,C are some observables.

4.1 Estimating Expectations of Observables

The algorithms in this work construct block encodings of a desired A and estimate

Tr(Aρ) for some given ρ. To do so we assume that there is a unitary that prepares a

purification of ρ, which is any pure state such that ρ can be obtained by tracing out some

ancillary space Cl.

Definition 4.1. Let ρ be a density operator on H and let |0〉 be some easy-to-prepare state

in H. A unitary Uρ on H⊗ Cl for some l is an R-preparation-unitary of ρ if we have

ρ = TrCl (|ρ〉 〈ρ|) , (4.6)

where |ρ〉 = Uρ(|0〉 |0〉l) and Uρ is implementable using R elementary gates.

Often we are interested in correlation functions and linear response with respect to

ground states or thermal states of some Hamiltonian. Depending on the situation performing

state preparation can be an extremely difficult computational task, and the identification

of specific practical situations where state preparation is easy is an area of active research

[BK16]. We consider the problem of state preparation itself out of scope for this work, but
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aim to present our algorithms in an abstract manner to maximize their versatility and permit

the leveraging of future results. We do point out the existence of the following generic tool

for constructing thermal states.

Lemma 4.2. Let H be a Hamiltonian on a D-dimensional Hilbert space with an α-scaled

block encoding with complexity Q-. Then for any β ≥ 0 there exists an R-preparation unitary

for a state ε-close in trace distance to the thermal state e−βH/Z where Z = Tr(e−βH) and:

R ∈ O

(
Qα ·

√
Dβ

Z
log

(√
D

Z

1

ε

))
(4.7)

Proof. This is the main result of [CS16], combined with the newer Hamiltonian simulation

results of [LC1610, LC1606] with corrections from [GSLW18]. Briefly, the strategy is to

construct a block encoding of e−βH/2 from eiHt using the Hubbard-Stratonovich transfor-

mation, and multiply it onto a purification of the maximally mixed state using a strategy

called robust oblivious amplitude amplification.

We now show how to use amplitude estimation to estimate the expectation of block

encoded observables.

Lemma 4.3. If A is Hermitian and has an α-scaled block encoding with complexity Q and ρ

has an R-preparation-unitary, then for every ε, δ > 0 there exists an algorithm that produces

an estimate ξ of Tr(ρA) such that

|ξ − Tr(ρA)| ≤ ε (4.8)

with probability at least (1− δ). The algorithm has circuit complexity O
(
(R+Q) · αε log 1

δ

)
.

Proof. The algorithm is as follows:

83



——————————————

Algorithm: Observable Estimation

Let Ā = (I + A/α)/2, and let UĀ be its 1-scaled block encoding with complexity O(Q)

which exists by Theorem 3.8. Let UĀ have k ancillae as in Definition 3.6, and let l and |0〉

be as in Definition 4.1. Let:

|ρ〉 := Uρ |0〉 |0〉l (4.9)

|Ψ〉 := (UĀ ⊗ I) |0〉k |ρ〉 (4.10)

Π := |0〉k 〈0|k ⊗ |ρ〉 〈ρ| (4.11)

Perform amplitude estimation to obtain an estimate ξ0 of |Π |Ψ〉 | to precision ε/(2α) with

probability at least (1− δ). Return ξ := (2ξ0 + 1)α.

——————————————

For details on how to perform amplitude estimation we refer to recent results

[AR19, GGZW19] that avoid using the quantum Fourier transform, which was required

by the traditional method [BHMT00] from 2002. These results establish that |Π |Ψ〉 | can be

estimated to additive error ε and probability at least (1− δ) using O
(

1
ε log 1

δ

)
applications

of a Grover operator:

G := −(I − 2Π)(I − 2 |Ψ〉 〈Ψ|) (4.12)

This operator requires four uses of Uρ and two uses of UĀ, so it has circuit complexity

O(R+Q). This completes the runtime analysis.
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Amplitude estimation estimates:

|Π |Ψ〉 | = | 〈0|k 〈ρ| (UĀ ⊗ I) |0〉k |ρ〉 | (4.13)

= | 〈ρ| (Ā⊗ I) |ρ〉 | (4.14)

= |Tr(|ρ〉 〈ρ| (Ā⊗ I))| (4.15)

= |Tr
(
TrCl(|ρ〉 〈ρ|)Ā

)
| = |Tr(ρĀ)| (4.16)

Since Ā has |Ā| ≤ 1 its eigenvalues lie in the range [−1, 1], so Ā is positive semi-definite.

Therefore ξ0 approximates |Tr(ρĀ)| = Tr(ρĀ) = (1 + Tr(ρA)/α)/2 to error ε/(2α), so ξ

approximates Tr(ρA) to error ε as desired.

In addition to providing a simple framework for manipulating observables on a

quantum computer, block encodings are often the starting point for modern Hamiltonian

simulation algorithms [BCK15, Berry&19]. Once a block encoding of a Hamiltonian H

is constructed, we can apply functions to its eigenvalues using quantum singular value

transformation discussed in section 4.3.

4.2 Correlation Functions

In this section we show how to estimate n-time correlation functions, improving on

an algorithm presented in [Pedernales&14]. This algorithm does not require any new tech-

nical tools. We include it primarily to illustrate how simple it is to construct algorithms for

complex quantities via block encodings. We also show how to estimate non-Hermitian block-

encoded observables. Consider a system evolving under a time-independent Hamiltonian H.

If Oi is some Hermitian operator then in the Heisenberg picture:

Oi(ti) := eiHtiOie
−iHti (4.17)

85



To prepare block encodings of observables in the Heisenberg picture we leverage a

modern result in Hamiltonian simulation for time-independent Hamiltonians. For simplicity

we focus on time-independent Hamiltonians but there also exist block encodings for time

evolution under time-dependent Hamiltonians [Berry&19, KSB18, LW18].

Lemma 4.4. Let H be a Hamiltonian on a D-dimensional Hilbert space with an α-scaled

block encoding with complexity Q. Then for any t, ε > 0 there exists an ε-accurate block

encoding with complexity T (t, ε) of eiHt where:

T (t, ε) ∈ O
(
Qα|t|+ Q log(1/ε)

log(e+ log(1/ε)/(α|t|))

)
(4.18)

Proof. This result originated in [LC1606, LC1610], but it is cleanly re-stated with minor

corrections as Corollary 60 of [GSLW18].

Using this result we can state and analyze the estimation algorithm.

Theorem 4.5. Let:

• H be a Hamiltonian with an α-scaled block encoding with complexity Q,

• O1, ..., On be some observables with βi-scaled block encodings with respective complex-

ities Ri,

• t1, ..., tn be some times,

• and ρ be a state with an S-preparation unitary.

Then for every ε, δ > 0 there exists an algorithm that produces estimate an estimate ξ ∈ C

of Tr (ρ
∏
iOi(ti)) to additive precision ε in the real and imaginary parts with probability at

86



least (1− δ). It has circuit complexity O
(
(S +W ) · γε log 1

δ

)
where γ =

∏
i βi and

W ∈O

 n∑
j=1

Rj +

n∑
j=0

T

(
τj ,

ε

2(n+ 1)2

) (4.19)

⊂O

 n∑
j=1

Rj +Qα

n∑
j=0

|τj |+Qn2 log
(n
ε

) (4.20)

where T (t, ε) is defined in Lemma 5.14 and τj = tj+1 − tj, padding the list of times with

t0 = tn+1 = 0.

Proof. The algorithm is as follows:

——————————————

Algorithm: n-time correlation functions

Making use of e−iHtjeiHtj+1 = eiH(tj+1−tj) = eiHτj , we rewrite the product of

observables as follows:

n∏
j=1

Oj(tj) = eiHt1O1e
iH(t2−t1)...One

−iHtn (4.21)

= eiHτ0
n∏
j=1

Oje
iHτj (4.22)

Invoking Lemma 5.14 we obtain ε
2(n+1)2 -accurate block encodings of eiHτj , and we multiply

them together with the block encodings ofOi using Theorem 3.8. We obtain a block encoding

UΓ with complexity W of an operator Γ that approximates
∏
iOi(ti).

Observe that U†Γ is a block encoding of Γ†. This allows us to use Theorem 3.8 to

construct γ-scaled block encodings with complexitiesW of the Hermitian and anti-Hermitian
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parts of Γ, as below. Then we invoke Lemma 4.3 with target accuracy ε/2 for each of the

below to obtain ε-accurate estimates of the real and imaginary parts of Tr (ρ
∏
iOi(ti)).

< (ξ) := estimate of Tr

(
ρ · Γ + Γ†

2

)
(4.23)

= (ξ) := estimate of Tr

(
ρ · Γ− Γ†

2i

)
(4.24)

——————————————

Since the block encodings of eiHδtj are 1-scaled, the only contribution to γ are the

scalings of the Oi, so γ =
∏
i βi. The runtime is dominated by the complexity W of the

block encoding for Γ, which by Theorem 3.8 is clearly given by (4.19). To obtain (4.20)

we loosely bound 1/ log(e+ log(1/ε)/(α|t|)) ≤ 1 in (4.18). This looseness overestimates the

runtime in situations where n is very large but the τj are very small.

It remains to show that Γ is ε/2-close in spectral norm to
∏
iOi(ti), given that

the block encodings of eiHτj are ε
2(n+1)2 -accurate. From there the ε/2-closeness of the

Hermitian and anti-Hermitian parts, and the ε-accuracy of the final estimates follow. In

general, Lemma 54 of [GSLW18] gives an argument that if |A− U | ≤ ε0 and |B − V | ≤ ε1

then

|AB − UV | ≤ ε0 + ε1 + 2
√
ε0ε1. (4.25)

Iterating this bound for a product of
∏n
i=0 Ui where |Ui − Ai| ≤ ε0 we obtain by solving a

recurrence relation: ∣∣∣∣∣
n∏
i=0

Ui −
n∏
i=0

Ai

∣∣∣∣∣ ≤ (n+ 1)2ε0. (4.26)

Plugging in ε0 := ε
2(n+1)2 gives the desired upper bound of ε/2.
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This algorithm improves over [Pedernales&14] in several ways. First, [Pedernales&14]

restricts to Pauli observables since they are unitary. Here Oi do not have to be unitary.

Secondly, since we are using amplitude estimation to obtain ξ we obtain a quadratic speedup

in the accuracy dependence. Finally, [Pedernales&14] restricts to Hamiltonians where exact

Hamiltonian simulation can be achieved using circuit identities. Of course, for situations

where these restrictions apply and the accuracy speedup can be sacrificed, their construc-

tion yields significantly smaller circuits which may be more amenable to near-term quantum

computers.

4.3 Integrals and Chebyshev Moments of Functions of the Energy

In this section we introduce some tools we will require for our quantum algorithms

for computing the density of states and linear response functions.

Say a Hermitian matrixA has an eigenvalue-eigenvector decompositionA =
∑
i λi |φi〉 〈φi|.

Given a block encoding of A, quantum singular value transformation allows us to construct

block encodings of p(A) =
∑
i p(λi) |φi〉 〈φi|, for polynomials p(x). This requires p(x) to be

appropriately bounded, and the complexity of the encoding scales linearly in the degree of

the polynomial. This method can also be generalized to non-Hermitian A with some caveats.

Singular value transformation is an extremely powerful result, and is a culmination of a long

line of research in quantum algorithms, presented in its full generality in [GSLW18].

Lemma 4.6. Let A have a block encoding with complexity Q, and let p(x) be a degree-d

polynomial satisfying |p(x)| ≤ 1 for x ∈ [−1, 1]. Then for every δ > 0 there exists a 1
2 -scaled

δ-accurate block encoding with complexity O(Qd) of p(A). A description of the circuit can

be computed in time poly
(
d, log 1

δ

)
.
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Proof. This strategy originated in [LC1606, LC1610] and is developed in [GSLW18] where

it is formalized as Theorem 56. Calculating the circuit demands careful consideration of

numerical precision. Recent work [Chao&20] describes an elegant strategy for dealing with

this issue.

The expressions for density of states (4.3,4.4) and linear response (4.55) are both

functions of the energy f(E) roughly of the form:

f(E) :=
∑
i

δ(E − Ei) 〈ψi|A |ψi〉 (4.27)

where {Ei} and {|ψi〉} are the eigenvalues and eigenvectors of the Hamiltonian and A is some

Hermitian matrix. Rather than computing point-estimates of f(E) we will be interested in

computing integrals of f(E) over a range [a, b] as well as the moments of a Chebyshev

expansion of f(E). To obtain the scaling requirements of Theorem 3.18 we observe that an

α-scaled block encoding of a Hamiltonian H guarantees that |H/α| ≤ 1. Rescaling ā = a/α

and b̄ = b/α, we construct a polynomial w(x) that allows us to approximate integrals over

the range [ā, b̄]:

Theorem 4.7. (Corollary 3.22 restated.) For every η > 0 and any ā, b̄ with −1 < ā < b̄ < 1

there there exists a polynomial w(x) such that for all f(αx) bounded by fmax (defined below

in (4.29)): ∣∣∣∣∣
∫ 1

−1

f(αx)w(x)dx−
∫ b̄

ā

f(αx)dx

∣∣∣∣∣ ≤ η (4.28)

The polynomial has degree d ∈ O( fmax

η ln fmax

η ) and satisfies the requirements of Theorem 3.14.

Our accuracy analysis requires a bound on f(αx), which is a bit subtle to define

since f(αx) is a sum of many delta functions. However, we only ever perform integrals of
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f(αx). Therefore when we say ‘f(αx) is bounded by fmax’ we mean that for all c̄ < d̄:

∫ d̄

c̄

f(αx)dx ≤ fmax · (d̄− c̄) (4.29)

The polynomial w(x) immediately yields a strategy for computing integrals since

the value can be expressed as a trace inner product.

∫ b

a

f(E)dE =

∫ b̄

ā

f(αx) · αdx (4.30)

≈ α
∫ 1

−1

f(αx)w(x)dx (4.31)

= α

∫ 1

−1

∑
i

δ(αx− Ei) 〈ψi|A |ψi〉w(x)dx (4.32)

= Tr

(
A
∑
i

∫ 1

−1

δ(x− Ei/α)w(x)dx |ψi〉 〈ψi|

)
(4.33)

= Tr

(
A
∑
i

w(Ei/α) |ψi〉 〈ψi|

)
(4.34)

= Tr (Aw(H/α)) (4.35)

In step (4.33) we used the identity δ(αx) = δ(x)/α. This final expression can then be

estimated using Lemma 4.3.

Next we briefly outline our strategy for sketching f(E) using the kernel polynomial

method [WWAF05]. A sketch fKPM(E) is a linear combination of Chebyshev polynomials

of the first kind Tn(x) weighted by coefficients µfngn. The µfn are the Chebychev moments of

f(E) and the gn are f(E)-independent smoothing coefficients (see for example the proof of

Jackson’s theorem in [Rivlin69]). Since Chebyshev expansions are performed on the domain

[−1, 1] we calculate moments of f(αx) for x ∈ [−1, 1].
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µfn :=

∫ 1

−1

Tn(x)f(αx)dx (4.36)

fKPM(αx) :=
1

π
√

1− x2

(
g0µ

f
0 + 2

N∑
n=0

µfngnTn(x)

)
(4.37)

For this work we concern ourselves only with estimation of µfn and defer to [WWAF05,

Fan&18] for details on how to construct fKPM(E). A similar derivation to (4.30-4.35) yields

the identity:

µfn :=

∫ 1

−1

Tn(x)f(αx)dx = Tr (ATn(H/α)) (4.38)

Conveniently, quantum singular value transformation is particularly simple for Chebyshev

polynomials.

Lemma 4.8. Let A have a block encoding with complexity Q. Then for every n there exists

an block encoding with complexity O(nQ) of Tn(A).

Proof. This is Lemma 9 of [GSLW18]. See also Example 3.12.

Now we have all the technical tools to state the main algorithms.

4.4 Density of States

In this section we show how to sketch the density of states (DOS):

ρ(E) =
1

D

∑
i

δ(Ei − E). (4.39)
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This is easily rewritten in the form in (4.27) by choosing A = I/D. Following (4.30-4.35)

and (4.38) we obtain: ∫ b

a

ρ(E)dE ≈ Tr

(
I

D
w(H/α)

)
(4.40)

µρn = Tr

(
I

D
Tn(H/α)

)
(4.41)

This argument makes use of of Theorem 4.7 which requires a bound on ρ(E). Observe that

in the sense of (4.29), ρ(αx) is bounded by any upper bound on the dimension of the largest

eigenspace of H which we call ρmax.

These quantities can be estimated by leveraging the fact that I/D has an O(log(D))-

preparation unitary.

Theorem 4.9. Let H have an α-scaled block encoding with complexity Q and take any

ε, δ > 0. Then:

1. For any a, b such that −α < a < b < α there exists a quantum algorithm that produces

an estimate ξ of
∫ b
a
ρ(E)dE with circuit complexity

O

((
Q · ρmax

ε
log

ρmax

ε
+ logD

)
· 1

ε
log

1

δ

)
(4.42)

and O(poly(ρmax/ε)) classical pre-processing, where ρmax is some upper bound on the

dimension of the largest eigenspace of H.

2. For any n there exists a quantum algorithm that produces an estimate ζ of µρn with

circuit complexity

O

(
(Q · n+ logD) · 1

ε
log

1

δ

)
. (4.43)

The estimates ξ and ζ have error ε with probability at least (1− δ).
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Proof. Observe that a preparation unitary for I/D simply prepares a Bell state on H⊗H,

call it |Bell(H)〉. If H is encoded as some subspace of a n-qubit system where n = dlog2(D)e

then |Bell(H)〉 can be obtained from |Bell(C2n)〉 via amplitude amplification. This procedure

can be made exact via the following standard trick involving an ancilla qubit. Observe that

β := 〈Bell(C2n)|Bell(H)〉 =
√
D/2n (4.44)

is known exactly. If U satisfies

U |02n〉 = |Bell(C2n)〉 (4.45)

= β |Bell(H)〉+
√

1− β2 |φ⊥〉 (4.46)

for some |φ⊥〉 ⊥ |Bell(C2n)〉 then define U ′ such that:

U ′ |02n+1〉 = γU |02n〉 |0〉+
√

1− γ2 |02n〉 |1〉 (4.47)

= γβ |Bell(H)〉 |0〉+
√

1− (γβ)2 |ψ⊥〉 (4.48)

for some |φ⊥〉 ⊥ |Bell(C2n)〉 |0〉 where γ is the largest number ≤ 1 such that

sin((2k + 1) arcsin(γβ)) = 1 (4.49)

has a solution where k is a positive integer. Then, if θ = arcsin(γβ) and ΠH is a projection

onto the H⊗ span(|0〉 〈0|) subspace of C2n+1, then we can define a Grover operator G that

exactly prepares |Bell(H)〉.

G = U ′(I−2 |02n+1〉 〈02n+1|)(U ′)†(I − 2ΠH) (4.50)

Gk |Bell(C2n)〉 = sin((2k + 1)θ)) |Bell(H)〉 |0〉

+ cos((2k + 1)θ) |ψ⊥〉 (4.51)

= |Bell(H)〉 |0〉 (4.52)
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Since 2n < 2D we have β ∈ Ω(1) so k ∈ O(1), so the circuit complexity is dominated

by U , which can be constructed using n Hadamard gates and n CNOT gates. Thus the

state I/D on a Hilbert space H encoded in Cn has an O(log(D))-preparation-unitary.

The algorithm for estimating integrals is as follows:

——————————————

Algorithm: Integral of the Density of States

1. Use Theorem 4.7 to construct the polynomial w(x) with η := ε
3 .

2. Use Theorem 3.18 to construct an ε
3 -accurate 1

2 -scaled block encoding of w(H/α). Say

that this is an exact 1
2 -scaled block encoding of w̃(H/α).

3. Use Lemma 4.3 to produce an ε
3 -accurate estimate ξ of Tr

(
I
D · w̃(H/α)

)
with proba-

bility at least (1− δ).

——————————————

By the triangle inequality the total error is at most ε. The polynomial w(x) has

degree:

d ∈ O
(ρmax

ε
log

ρmax

ε

)
(4.53)

The approximate block encoding of w̃(H/α) has circuit complexity O(dQ) and the prepa-

ration unitary for I/D has circuit complexity logD. Combining these with the number of

samples required by Lemma 4.3 gives the overall complexity (4.42).
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The algorithm for Chebyshev Moments is significantly simpler:

——————————————

Algorithm: Chebyshev Moments of Density of States

1. Use Lemma 4.8 to construct a block encoding of Tn(H/α).

2. Use Lemma 4.3 to produce an ε-accurate estimate ζ of Tr
(
I
D · Tn(H/α)

)
with proba-

bility at least (1− δ).

——————————————

Since the block encoding and state preparation are exact, the error stems entirely

from the estimation procedure in Lemma 4.3. The circuit complexity from Lemma 4.8 is

O(nQ), so the overall complexity (4.43) also follows from Lemma 4.3.

Estimation of integrals of ρ(E) benefit from knowledge of an upper bound ρmax.

Indeed even in pathological cases where H ∝ I we have ρmax = 1, so the circuit complexity

can never suffer from high densities of state. We argue that in practical situations prior

information on H can be used to bound ρmax, thereby improving the complexity. For

example, the DOS of quantum many body systems with local interactions is often close to a

Gaussian due to the central limit theorem. In particular, [HMH04] discusses the DOS of a

nearest-neighbor Hamiltonian acting on a spin chain. From their work on the transverse-field

Ising model with n sites we can derive:

ρmax =
C

D

(
n

n/2

)
≈ Cπ

√
2

n
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for some constant C (see the discussion surrounding equation 30 in [HMH04]). Here ρmax

decreases with the number of sites.

Furthermore, exact degeneracy in a Hamiltonian is connected to the Hamiltonian’s

symmetries [CF16]. If there exists a degenerate subspace of dimension Dρmax then any uni-

tary transformations on that subspace must preserve the Hamiltonian. Thus, prior knowl-

edge of the symmetries could be used to obtain a bound on ρmax. However, if only a subset

of the symmetries is known then this only leads to a lower bound on the dimension of the

largest eigenspace, which is not useful here.

Of course, the efficiency of the algorithm relies on the 1/D factor in our definition

of ρ(E). If we were interested in the actual number of states within an interval, the circuit

complexity would scale with D (for fixed ε). This is to be expected since the number of

states in the ground space of a Hamiltonian is #P-hard to compute exactly and NP-hard to

estimate to within relative error [BFS10].

Next we consider the local density of states. Say we are working with a Hamiltonian

describing a single particle in real space or some space with a notion of locality so that for

every position ~r there is a state |ψ(~r)〉 denoting the state with the particle at ~r. Then local

density of states (LDOS) at ~r is given by [WWAF05, DiVentra08, YLMV13]:

ρ~r(E) =
∑
i

δ(Ei − E)| 〈ψi|~r〉 |2 (4.54)

The algorithms for sketching the LDOS are a simple modification of the algorithms

for DOS: instead of preparing a maximally mixed state we simply prepare |ψ(~r)〉. Indeed if

|ψ(~r)〉 has an O(R)-preparation unitary, the new circuit complexities are the same as those

in Theorem 4.9 but with logD replaced with R.
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If H is a lattice Hamiltonian, e.g. a Fermi-Hubbard model, then the states |ψ(~r)〉 are

trivial to prepare since the Jordan-Wigner transformation that maps H to qubits preserves

locality. For Hamiltonians describing a particle in real-space, the cost of preparing |ψ(~r)〉

depends on the particular choice of basis functions, e.g. Hartree-Fock, used to encode H on

the quantum computer.

Similarly to the DOS, estimation of LDOS can benefit from bounds on ρmax and

it remains true that even for pathological Hamiltonians like H ∝ I we have ρmax ≤ 1.

However, it no longer makes sense to bound ρmax via a central limit theorem since there is

only one particle involved.

4.5 Linear Response

In this section we show how to sketch correlation functions of the form:

A(E − E0) = 〈Bδ(E −H)C〉 (4.55)

We shift the function by the ground state energy E0 since we consider estimation

of the ground state energy out of scope. This work improves on an quantum algorithm by

[RC18] and is useful to compare to a classical algorithm based on matrix product states

[Holzner&11] that also uses the kernel polynomial method.

Following a similar argument to (4.30-4.35) and (4.38), we connect the desired

quantities to expectations of observables that can be represented by block encodings:

∫ b

a

A(E − E0)dE ≈ 〈Bw(H/α)C〉 (4.56)

µAn = 〈BTn(H/α)C〉 (4.57)
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This naturally yields quantum algorithms quite similar to those presented in The-

orem 4.9, just with some constants changed.

Theorem 4.10. Let:

• H have an α-scaled block encoding with complexity Q,

• ρ have an R-preparation-unitary,

• B have β-scaled block encoding with complexity SB and C have γ-scaled block encoding

with complexity SC .

Then for any ε, δ > 0:

1. For any a, b such that −α < a < b < α there exists a quantum algorithm that produces

an estimate ξ of
∫ b
a
A(E)dE with circuit complexity

O

(
(Qd+ SB + SC +R) · βγ

ε
log

1

δ

)
(4.58)

and O(poly(d)) classical pre-processing, where ρmax a bound on the dimension of the

largest eigenspace and

d = O

(
ρmaxβγ

ε
log

ρmaxβγ

ε

)
. (4.59)

2. For any n there exists a quantum algorithm that produces an estimate ζ of µAn with

circuit complexity

O

(
(Qn+ SB + SC +R) · βγ

ε

)
. (4.60)
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The estimates ξ and ζ have error ε with probability at least (1−δ) in their real and imaginary

parts.

Proof. The algorithm for computing integrals is as follows:

——————————————

Algorithm: Integrals of Linear Response Functions

1. Use Theorem 4.7 to construct the polynomial w(x) with η := ε
3 .

2. Use Theorem 3.18 to construct an ε
3 -accurate 1

2 -scaled block encoding of w(H/α), and

say it is an exact 1
2 -scaled block encoding of w̃(H/α).

3. Use Theorem 3.8 to construct a 1
2βγ-scaled block encoding of Ξ := Bw̃(H/α)C.

4. Use Lemma 4.3 to produce an ε
3 -accurate estimates of the real and imaginary parts of

ξ with probability at least (1− δ), corresponding to the Hermitian and anti-Hermitian

parts of Ξ as in (4.23,4.24).

——————————————

The accuracy and complexity analysis is almost identical to that in Theorem 4.9,

except for the fact that since |B| ≤ β and |C| ≤ γ we observe that A(αx) is bounded by

ρmaxβγ when invoking Theorem 4.7. The algorithm for Chebyshev moments is as follows:

——————————————

Algorithm: Chebyshev Moments of Linear Response Functions
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1. Use Lemma 4.8 to construct a block encoding of Tn(H/α).

2. Use Theorem 3.8 to construct a βγ-scaled block encoding of Z := BTn(H/α)C.

3. Use Lemma 4.3 to produce an ε-accurate estimates of the real and imaginary parts of

ζ with probability at least (1−δ), corresponding to the Hermitian and anti-Hermitian

parts of Z as in (4.23,4.24).

——————————————

This technique is significantly more versatile than that of [RC18], which only treats

the case when B = C and when ρ = |ψ0〉 〈ψ0|. Their algorithm runs Hamiltonian simulation

under B for a short amount of time to approximately prepare the state B |ψ0〉, which is an

additional source of error. Furthermore their work also does not capitalize on accuracy

improvements from amplitude estimation.

The classical strategy [Holzner&11] relies on Matrix Product State (MPS) represen-

tations of states |tn〉 = Tn(H/α)C |ψ0〉. When accurate and efficient MPS representations

of |tn〉 exist (and |ψ0〉 can be efficiently obtained - an assumption we also make), then quan-

tum strategies are not needed. Indeed for many physical systems ground states obey area

laws (see e.g. [AAG19]), which lends MPS strategies their power. Quantum strategies will

still be useful for ground states with large amounts of entanglement where efficient classical

representations do not exist.
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4.6 Conclusion

We have demonstrated that block encodings provide a powerful framework for the

matrix arithmetic on a quantum computer. This modern and versatile toolkit for quantum

algorithms encompasses fundamental strategies such as amplitude amplification and esti-

mation, and novel results in active areas like Hamiltonian simulation can be immediately

leveraged due to its modularity. Furthermore, once all the necessary tools are assembled,

algorithms based on block encodings are trivial to analyze. We believe that block encodings

are the state-of-the-art technique for estimating physical quantities on a quantum computer.

This claim should be further tested by attempting to quantize other numerical strategies in

condensed matter physics.
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Chapter 5

Measuring Observables

This chapter is based on [Rall21]. Some theorems were removed since they already

appear in Chapter 3.

Phase estimation is one of the most widely used quantum subroutines, because it

grants quantum computers two unique capabilities. First, it yields a quadratic speedup in

the accuracy of Monte Carlo estimates [BHMT00, Mon15, HM18]. Achieving ‘Heisenberg

limited’ accuracy scaling has numerous applications in physics, chemistry, machine learning,

and finance [Wright&20, ESP20, Rall20, An&20]. Second, it allows quantum computers to

diagonalize unitaries in a certain restricted sense: if U =
∑
j e

2πiλj |ψj〉 〈ψj | then phase

estimation performs the transformation

∑
j

αj |0n〉 |ψj〉 →
∑
j

αj |λj〉 |ψj〉 (5.1)

where |λj〉 is an n-bit estimate of λj . This access to spectral information enables quantum

speedups for linear algebra [HHL08, CKS15], studying physical systems [Temme&09, YA11,

Lemi&19, JKKA20], estimating partition functions [Mon15], and performing Bayesian in-

ference [HW19, AHNTW20].

Phase estimation is also a very complicated algorithm. Textbook phase estimation

[NC00] requires the Quantum Fourier Transform (QFT), a tool we commonly associate

with the exponential speedup of Shor’s algorithm [Shor95]. However, phase estimation only
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delivers a quadratic speedup for estimation and the exponential speedup for linear algebra

can sidestep the QFT [CKS15, GSLW18]. When applied to energies, phase estimation also

requires Hamiltonian simulation, a quantum subroutine that is an entire subject of study

in its own right: it requires recent innovations to apply optimally in a black-box setting

[BCK15, LC1606, LC1610, LC17, GSLW18] and optimal Hamiltonian simulation for specific

systems is still being actively studied [SHC20, Cam20]. Furthermore, phase estimation

demands median amplification to guarantee an accurate answer. This can be challenging

to implement coherently on a quantum computer [HNS01, Klauck02, Beals&12], because it

requires many ancillae and a quantum sorting network. The probability with which phase

estimation gives the correct answer (sometimes referred to as the ‘Fejer kernel’ [Rogg20])

is not always high enough to be amplified, which must be dealt with either by rounding

or adaptivity [AA16]. The conceptual complexity of textbook phase estimation and the

resulting computational overhead motivates a search for alternatives.

Fortunately, a lot of simplification is possible if we allow for ‘incoherent’ algorithms,

where incoherence manifests via a variety of assumptions. We could be allowed to measure

the quantum state, either because we are given many copies of the input state, or because

we have the ability to prepare it inexpensively. Alternatively, we can assume a type of

adaptivity where quantum states wait patiently without decohering while a classical com-

puter performs a computation on the side. This assumption sometimes lets us repair the

input state after using it [MW05, Temme&09, Poulin&17]. But most importantly, incoher-

ent phase estimation algorithms usually require that the input state is an eigenstate of the

unitary or Hamiltonian in question.

If enough of these assumptions hold, then ‘iterative phase estimation’ [Kit95] re-
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moves an enormous amount of conceptual and computational overhead. The estimate can

be extracted one bit at a time, thereby removing the QFT. The accuracy of each bit can

be amplified individually via many classical samples, removing the need for the quantum

sorting network. The awkward notion of an ‘n-bit estimate’ can be removed and replaced

with a traditional additive-error estimate [AA16]. Iterative phase estimation has seen many

refinements and has been applied to gate set tomography and ground state energy esti-

mation [Higgins07, KLY15, LT21]. An incoherent iterative approach also permits direct

simplification of amplitude estimation [AR19, GGZW19].

However, for some applications of phase estimation maintaining coherence remains

crucial. The original strategy for quantum matrix inversion [HHL08], quantum Metropolis

sampling [Temme&09, YA11, Lemi&19], and a protocol for partition function estimation

[Mon15], thermal state preparation, and Bayesian inference [HW19, AHNTW20] all violate

the assumptions above. The eigenvalues must be estimated while preserving the superpo-

sition, and there is no guarantee that the input state is an eigenstate. These applications

of ‘coherent’ phase estimation motivate the main question of this chapter: does there exist

a conceptually and computationally simpler algorithm for performing the transformation

(5.1) while remaining coherent? That is: the input state is not necessarily an eigenstate, we

are given exactly one copy, and there is no adaptive interaction with a classical computer.

In this chapter we answer this question in the affirmative. We present simplified

coherent algorithms for phase estimation, energy estimation, and amplitude estimation.

None of these algorithms require a QFT, and they can be made arbitrarily close to the

ideal transformation without a quantum sorting network to compute a median. These

algorithms are about 14x to 20x faster than traditional phase estimation in terms of their
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query complexity, a performance metric that neglects the fact that they also require fewer

ancilla qubits.

However, we also observe that there are unavoidable barriers to estimation in super-

position. Consider an estimation algorithm that outputs a superposition of two estimates

λ̂
(1)
j and λ̂

(2)
j , both of which could be pretty close to the true value λj :

∑
j

αj |0n〉 |ψj〉 →
∑
j

αj

(
ξj |λ(1)

j 〉+ ζj |λ(2)
j 〉
)
|ψj〉 (5.2)

However, it is a well known fact [BBBV97] that uncomputation cannot work in such a

situation (unless one of ξj or ζj is ≈ 0). Thus, any algorithm that actually makes use of the

estimates must necessarily damage the input superposition and can no longer be considered

coherent.

Even worse, we show that any unitary quantum algorithm for estimation must

perform a map in the form (5.2), and there always exist some values of λj where the neither

of the ξj and ζj are ≈ 0. Therefore, the only way to get an algorithm that performs the

deterministic transformation (5.1) is to assume certain values of λj do not appear. We refer

to this as a rounding promise, and show that if the rounding promise holds, then our

algorithms perform the map (5.1). However, we also construct our algorithms in such a way

that they give reasonable non-deterministic estimates as in (5.2) even when no rounding

promise holds.

In the following we give a brief outline of the method we use to construct the

algorithms. They strongly resemble iterative phase estimation [Kit95], which works roughly

like this: the estimate is computed one bit at a time, starting with the least significant

bit. A ‘Hadamard-test’ computes each bit with a decent success probability, which is then
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amplified to a high probability by taking the majority vote of many samples. This process

could be made coherent naively by computing each sample into an ancilla, but this requires

so many ancillae that any performance benefit over the QFT- and median-based approach

is lost. The key idea is to amplify without using any new ancillae.

To manipulate the probabilities of the Hadamard-test, we use ‘block encodings’.

block encodings permit quantum computers to manipulate non-unitary matrices. In our

case, the matrices’ eigenvalues encode our probabilities. A unitary matrix UA is a block

encoding of A if A is in the top-left corner:

UA =

[
A ·
· ·

]
(5.3)

Block-encoded matrices can be manipulated in two ways. First, linear combinations of uni-

taries [BCK15, CKS15] allow us to build block encodings αA+βB given block encodings of

A and B. Linear combinations of unitaries allow us to make block encodings of Hamiltonians

presented as a sum of local terms, covering most practical applications. Second, singular

value transformation [LC1610, LC1606, GSLW18] lets us apply certain polynomials p(x) to

the singular values of a block-encoded matrix A, using deg(p) many queries to controlled-UA

and its inverse.

Together, these two techniques permit the unification of many quantum algorithms

into a single framework. For an accessible introduction to these methods, along with a

comprehensive review of the most modern versions of these algorithms we refer to [MRTC21].

This work also presents the independent discovery of an algorithm very similar to our

improved method of phase estimation, which is also sketched in [Chuang20].

To obtain the k’th bit (0 ≤ k < n − 1), iterative phase estimation performs a
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Hadamard-test on U2n−k−1

, where U =
∑
j e

2πiλj |ψj〉 〈ψj |. The outcome of the test is a

coin toss that is heads with probability cos2(2n−k−1πλi). We observe that the quantum

circuit for the Hadamard-test resembles a linear combination of unitaries. Therefore, we

can construct a block encoding of a matrix whose eigenvalues encode the Hadamard-test

probability for each eigenvector of U .

Iterative phase estimation then proceeds to perform the Hadamard-test several

times and takes the majority vote. We observe that the probability that the majority

vote is 1 is a polynomial in the Hadamard-test probability p:

Pr[majority vote is 1] =

M∑
k=dM/2e

(
M

k

)
pk(1− p)M−k (5.4)

We can therefore apply such an ‘amplifying polynomial’ [Diak09] directly to the block en-

coding using singular value transformation, which requires no new ancillae. In fact, using

techniques from [LC17], we can construct a polynomial that performs the same task with

much smaller degree.

Now we have amplified the eigenvalues of the block encoding to be close to 0 or

1, so we have a projector. To extract the 0/1-eigenvalue into a qubit we use the following

novel technical tool:

Theorem. Block-measurement. Say we have an approximate block encoding of a

projector Π. Then there exists a quantum channel that approximately implements the map:

|0〉 ⊗ |ψ〉 → |1〉 ⊗Π |ψ〉+ |0〉 ⊗ (I −Π) |ψ〉 (5.5)

The channel is based on uncomputation [BBBV97], but the error analysis also features an

interesting trick to deal with the case where the uncomputation fails. This theorem may

find applications elsewhere.
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Repeating the above procedure for each bit while carefully adjusting the phases

at every step yields an algorithm that performs coherent phase estimation with no ancil-

lae required. To estimate energies, we can construct a block encoding with eigenvalues

cos2(2n−k−1πλj) directly using the Jacobi-Anger expansion [GSLW18] rather than going

through Hamiltonian simulation, which boosts the performance further, although now the

algorithm does require ancillae. Finally, to perform coherent amplitude estimation, we con-

struct a block encoding of a 1x1 matrix containing the amplitude to be estimated and then

invoke energy estimation.

A key research question of this chapter is: Do these algorithms perform better than

traditional phase estimation in practice? An asymptotic analysis is not sufficient to answer

this question. Instead, we carefully bound the query complexity and failure probability of

all algorithms involved using the diamond norm and carefully select constants to maximize

the performance. Subsequently, we perform a numerical analysis of the query complexity.

We find that we improve the query complexity of phase estimation by a factor of about 13x,

and the query complexity of energy estimation is improved by about 20x. Our amplitude

estimation algorithm inherits the speedup of the energy estimation algorithm.

This chapter is structured as follows. In section 5.1 we carefully define the problem

of coherent estimation and establish the notion of a rounding promise. Then we analyze

the textbook method. In section 5.2 we present our novel algorithms for phase and energy

estimation. In section 5.3 we discuss a numerical analysis of the query complexities of the

algorithms. Then, in section 5.4 give a proof of the block-measurement theorem above and

then show how to use energy estimation to perform non-destructive amplitude estimation

in section 5.5.
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5.1 Preliminaries

In this section we formally define the estimation tasks we want to solve (Defini-

tion 5.2). This requires setting up the notion of a ‘rounding promise’ (Definition 5.1) which

highlights an inherent complication with coherent estimation that is not present in the in-

coherent case. We argue that this complication is unavoidable, and should be taken into

account when coherent estimation is performed in practice. Next, we set up some sim-

ple technical tools for dealing with the error analysis of uncomputation (Lemmas 5.3,5.4).

These will be used several times in this chapter. Finally, we give a precise description and

analysis of ‘textbook’ phase estimation (Proposition 5.5). Thus, this section clearly defines

the problem and the previous state-of-the-art which we improve.

Our chapter presents algorithms for phase, energy, and amplitude estimation. Am-

plitude estimation follows as a relativity simple corollary of energy estimation so we will only

be talking about the prior two until Section 5.4. To talk about both phases and energies at

once, we standardize input unitaries and Hamiltonians into the following form:

U =
∑
j

e2πiλj |ψj〉 〈ψj | H =
∑
j

λj |ψj〉 〈ψj | (5.6)

We refer to the {λj} as the ‘eigenvalues’, and assume they live in the range [0, 1). While

any unitary can be put into this form, the form places the constraint 0 � H ≺ I onto the

Hamiltonian.

Our goal is to compute |λj〉 an ‘n-bit estimate of λj ’. In this chapter, we take this

to be an n-qubit register containing a binary encoding of the number floor(2nλj). Since

λj ∈ [0, 1) we are guaranteed that floor(2nλj) is an integer ∈ {0, ..., 2n− 1} and thus has an

n-bit encoding.

110



Consider phase estimation using a quantum circuit composed of elementary uni-

taries and controlled-e2πiλj . Following an argument related to the polynomial method, we

see that the resulting state must be of the form:

∑
x∈{0,1}n

∑
y

αx,y(e2πiλj ) |x〉 |garbagex,y〉 (5.7)

where αx,y(e2πiλj ) is some polynomial of e2πiλj . We would like |x〉 to encode floor(2nλj),

meaning that αx,y(e2πiλj ) = 1 if x = floor(2nλj) and αx,y(e2πiλj ) = 0 otherwise. This is

impossible: αx,y(e2πiλj ) is a continuous function of λj , but the desired amplitude indicating

x = floor(2nλj) is discontinuous. For energy estimation a similar argument applies, just

that the amplitudes are of the form αx,y(λj). This argument even holds in the approximate

case when we demand that αx,y ≤ δ or ≥ 1−δ for some small δ - the discontinuity is present

regardless.

To some extent, this issue stems from the awkwardness of the notion of an ‘n-

bit estimate’ since it requires rounding or flooring, a discontinuous operation, when only

continuous manipulation of amplitudes is possible. A more comfortable notion is that of an

additive-error estimate, used by [AA16, KP16] in their estimation algorithms.

However, the primary application of our algorithms is a situation where this simpli-

fication is not possible: Szegedy walks based on Hamiltonian eigenspaces [YA11, Lemi&19,

JKKA20, WT21]. The original quantum Metropolis algorithm [Temme&09] implements a

random walk over Hamiltonian eigenspaces, where the superposition is measured at every

step and it is demonstrated that an additive error estimate is sufficient. But in order to

harness a quadratic speedup due to quantum walks [Sze04], the measurement of energies
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must be made completely coherent, which is not achieved by an additive-error estimate

unless the error is smaller than the gap between any eigenvalues. Therefore, we retain the

notion of an ‘n-bit estimate’ in this chapter. We could always fall back to an estimate with

additive error ε/2 by computing n = ceil(log2(ε−1)) bits of accuracy.

However, the above argument still applies for additive-error estimation: the ampli-

tude of any given estimate |λ̂〉 is a continuous function of the eigenvalue λj . This means

that the amplitude cannot be 0 or 1 everywhere, there must exist points where it crosses

intermediate values in order to interpolate in between the two. In both the ‘n-bit estimate’

case and the additive-error case, this causes a problem for coherent quantum algorithms

since the estimate cannot always be uncomputed. For some eigenvalues λj , the algorithm

will yield an output state of the form α |λ̂〉+ β |λ̂′〉. Even if λ̂, λ̂′ are good estimates of λj ,

the uncompute trick [BBBV97] cannot be used for such an output state. Thus, the damage

to the input superposition over |λj〉 is irreparable.

The only way to deal with this issue is to assume that the λj do not take certain

values. Then the amplitudes can interpolate between 0 and 1 at those points. Observe

that the discontinuities in the function floor(2nλj) occur at multiples of 1/2n. A ‘rounding

promise’ simply disallows eigenvalues near these regions.

Definition 5.1. Let n ∈ Z+ and α ∈ (0, 1). A hermitian matrix H satisfies an (n, α)-

rounding promise if it has an eigendecomposition H =
∑
j λj |ψj〉 〈ψj |, all the eigenvalues

λj satisfy 0 ≤ λj < 1, and for all x ∈ {0, ..., 2n}:

λj 6∈
[ x

2n
,
x

2n
+

α

2n

]
(5.8)

Similarly, a unitary matrix U satisfies an (n, α)-rounding promise if it can be written
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as U =
∑
j e

2πiλj |ψj〉 〈ψj | and the phases λj satisfy the same assumptions.

We have λj ∈ [0, 1), and we have disallowed λj from certain sub-intervals of [0, 1).

The definition above is chosen such that the total length of these disallowed subintervals

is α, regardless of the value of n. We have essentially cut out an α-fraction of the allowed

eigenvalues.

Guaranteeing a rounding promise demands an enormous amount of knowledge about

the eigenvalues. We do not expect many Hamiltonians or unitaries in practice to actually

provably satisfy such a promise. However, we expect that the estimation algorithms dis-

cussed in this chapter will still perform pretty well even if they do not satisfy such a promise.

One can increase the chances of success by setting α to be very small, so that the vast ma-

jority of the eigenvalues do not fall into a disallowed region. Then, if the input state is

close to a uniform distribution over the eigenstates, then one can be fairly confident that

only an α fraction of the eigenvalues in the support will be disallowed. The need for a

rounding promise can be also sidestepped entirely by avoiding the use of energy estimation

as a subroutine and approaching the desired problem directly. This has been accomplished

for ground state finding [LT20].

The rounding promise is not just a requirement of our work in particular - it is

a requirement for any coherent phase estimation protocol. The fact that coherent phase

estimation does not work for certain phases is largely disregarded in the literature: for ex-

ample, works like [KP16] neglect this issue entirely. However, there are some works that

have observed this problem and attempt to mitigate it. Such methods are called ‘consistent

phase estimation’ [TaShma13] since the error of their estimate is supposedly independent of

the phase being estimated, thus allowing amplification to make the amplitudes always close
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to 0 or 1. We claim that all of these attempts fail, and furthermore that achieving coherent

phase estimation without some kind of promise is impossible in principle. This is due to

the polynomial method argument above: any coherent quantum algorithm’s output state’s

amplitudes must be a continuous function of the phase, and continuous functions that are

sometimes ≈ 0 and sometimes ≈ 1 must somewhere have an intermediate value. Recall that

uncomputation only works when the amplitudes are close to 0 or 1. The error depends on if

the phase is close to this transition point or not, so the error must depend on the phase. This

issue was not taken into account by [Ambainis10], [KP17], and [KLLP18], since all of these

either implicitly or explicitly state that there is an algorithm that approximately performs

|ψi〉 |0n〉 → |ψi〉 |λi〉 in superposition while λi is a deterministic computational basis state1.

A more promising approach is detailed in [TaShma13], which, crudely speaking, shifts the

transition points by a classically chosen random amount. Now whether or not a phase is

close to a transition point is independent of the phase itself, making amplification possi-

ble. [Ambainis10] describes a similar idea, calling it ‘unique-answer’ eigenvalue estimation.

However, we claim that this only works for a single phase. If we consider, for example, a

unitary whose phases are uniformly distributed in [0, 1) at a sufficiently high density, then

there will be a phase near a transition point for any choice of random shift. The only way

to avoid the rounding promise is to sacrifice coherence and measure the output state.

All of the algorithms in this chapter, including textbook phase estimation, achieve

an asymptotic runtime of O(2nα−1 log(δ−1)), where δ is the error in diamond norm. Before

we move on to the formal definition of the estimation task, we informally argue that the

1[Ambainis10] makes use of such a map in Algorithm 4. [KP17] states this as Theorem II.2. [KLLP18]
sketches but does not analyze a protocol for this after Claim 4.5.
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α−1 dependence is optimal, via a reduction to approximate counting. We are given N

items, K of which are marked. Following the standard method for approximate counting

[BHMT00], we construct a Grover unitary whose phases λj encode arcsin(
√
K/N). Given

a (1, α)-rounding promise, computing floor(21λj) amounts to deciding if λj ≤ 1−α/2
2 or

λj ≥ 1+α/2
2 given that one of these is the case. By shifting the λj around appropriately we

can thus decide if K ≥ (1/2 + Cα)N or K ≤ (1/2 − Cα)N , for some constant C obtained

by linearising arcsin(
√
K/N). We have achieved approximate counting with a promise gap

∼ α. Thus the Ω(α−1) lower bound on approximate counting [NW98] implies our runtime

must be Ω(α−1).

Equipped with the notion of a rounding promise, we can define our estimation

tasks. Many algorithms in this chapter produce some kind of garbage, which can be dealt

with the uncompute trick [BBBV97]. Rather than repeat the analysis of uncomputation in

every single proof, we present a modular framework where we can deal with uncomputation

separately. Furthermore, some applications may require computing some function of the

final estimate, resulting in more garbage which also needs to be uncomputed. Rather than

baking the uncomputation into each algorithm, it is thus more efficient to leave the decision

of when to uncompute to the user of the subroutine.

Definition 5.2. A phase estimator is a protocol that, given some n ∈ Z+ and α ∈ (0, 1),

and any error target δ > 0, produces a quantum circuit involving controlled U and U† calls

to some unitary U . If U =
∑
j e

2πiλj |ψj〉 〈ψj | satisfies an (n, α)-rounding promise then this

circuit implements a quantum channel that is δ-close in diamond norm to the map:

|0n〉 |ψj〉 → |floor(λj2
n)〉 |ψj〉 (5.9)
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Similarly, an energy estimator is such a protocol that instead involves such calls

to UH which is a block encoding (see Definition 3.6) of a Hamiltonian H =
∑
j λj |ψj〉 〈ψj |

that satisfies an (n, α)-rounding promise.

The query complexity of an estimator is the number of calls to U or UH in the

resulting circuit, as a function of n, α, δ.

An estimator is said to ‘have garbage’ or ‘have m qubits of garbage’ if it is

instead close to a map that produces some j-dependent m-qubit garbage state in another

register:

|0n〉 |0...0〉 |ψj〉 → |floor(λj2
n)〉 |garbagej〉 |ψj〉 (5.10)

(Note that the quantum circuit can allocate and discard ancillae, but that does not count as

garbage.)

An estimator is said to ‘have phases’ if the map introduces a j-dependent phase

ϕj:

|0n〉 |ψj〉 → eiϕj |floor(λj2
n)〉 |ψj〉 (5.11)

If an estimator is both ‘with phases’ and ‘with garbage’, then we can just absorb

the eiϕj into |garbagej〉 so the ‘with phases’ is technically redundant. However, in our

framework it makes more sense to treat phases and garbage independently since some of

our algorithms are just ‘with phases’.

The reason we measure errors in diamond norm has to do with uncomputation of

approximate computations with garbage. Consider for example a transformation V acting
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on an answer register and a garbage register:

V |0〉 |0...0〉 =
√

1− ε |0〉 |garbage0〉+
√
ε |1〉 |garbage1〉 (5.12)

for some small nonzero ε. We copy the answer register into the output register:

→
√

1− ε |0〉 ⊗ |0〉 |garbage0〉+
√
ε |1〉 ⊗ |1〉 |garbage1〉 (5.13)

and then we project the answer and garbage registers onto V |0〉 |0...0〉:

→
√

1− ε |0〉 ·
√

1− ε+
√
ε |1〉 ·

√
ε (5.14)

The resulting state (1−ε) |0〉+ε |1〉 is not normalized, meaning that the projection V |0〉 |0...0〉

succeeds with some probability < 1. Thus the uncomputed registers are not always returned

to the |0〉 |0...0〉 state.

At this point our options are either to postselect these registers to |0〉 |0...0〉 or to

discard them. Postselection improves the accuracy, but also implies that the algorithms

do not always succeed. Since many applications of coherent energy estimation demand

repeating this operation many times, it is important that the algorithm always succeeds.

Thus, we need to discard qubits, so we need to talk about quantum channels. Therefore,

the diamond norm is the appropriate choice for an error metric. Recall that the diamond

norm is defined in terms of the trace norm [AKN98]:

|Λ|� := sup
ρ
|(Λ⊗ I)(ρ)|1 (5.15)

where I is the identity channel for some Hilbert space of higher dimension than Λ.

The following analysis shows how to remove phases and garbage from an estimator, even in

the approximate case.
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Lemma 5.3. Getting rid of phases and garbage. Given a phase/energy estimator

with phases and/or garbage with query complexity Q(n, α, δ) that is unitary, we can con-

struct a phase/energy estimator without phases and without garbage with query complexity

2Q(n, α, δ/2).

Proof. Without loss of generality, we assume we are given a quantum channel Λ that im-

plements something close in diamond norm to the map:

|0n〉 |0...0〉 |ψj〉 → eiϕj |floor(λj2
n)〉 |garbagej〉 |ψj〉 (5.16)

If the channel is actually without phases then we can just set ϕj = 0, and if it is actually

without garbage then the following calculation will proceed without problems. Our strategy

is just to use the uncompute trick, and then to discard the uncomputed ancillae. This

requires us to implement Λ−1, so we required that Λ be implementable by a unitary.

|0n〉

|0n〉

Λ

•

Λ−1

discard

|0...0〉 discard

|ψj〉

(5.17)

First, we consider the ideal case when Λ implements the map (5.16) exactly. If we

use |ψj〉 as input and we stop the circuit before the discards, we produce a state |idealj〉:

|0n〉 |0n〉 |0...0〉 |ψj〉 → eiϕj |0n〉 |floor(λj2
n)〉 |garbagej〉 |ψj〉 (5.18)

→ eiϕj |floor(λj2
n)〉 |floor(λj2

n)〉 |garbagej〉 |ψj〉 (5.19)

→ |floor(λj2
n)〉 |0n〉 |0...0〉 |ψj〉 =: |idealj〉 (5.20)
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Let ρideal
i,j := |ideali〉 〈idealj |, so that we can write down the ideal channel:

Γideal(σ) :=
∑
i,j

〈ψi|σ |ψj〉 · ρideal
i,j (5.21)

If we apply Λ with error δ/2 instead we obtain the actual channel Γ such that:

sup
σ
|(Γ⊗ I)(σ)− (Γideal ⊗ I)(σ)|1 ≤ δ (5.22)

If A refers to the subsystems that start (and approximately end) in the states |0n〉 |0...0〉

then the final output state satisfies:

sup
σ
|TrA ((Γ⊗ I)(σ))− TrA ((Γideal ⊗ I)(σ))|1 (5.23)

≤ sup
σ
|TrA ((Γ⊗ I)(σ)− (Γideal ⊗ I)(σ))|1 (5.24)

≤ sup
σ
|(Γ⊗ I)(σ)− (Γideal ⊗ I)(σ)|1 ≤ δ (5.25)

where we have used the fact that for all ρ and subsystems A we have |TrA(ρ)|1 ≤ |ρ|1. Upon

plugging in σ = |ψj〉 〈ψj | we can see that tracing out the middle register after applying

Γideal implements the map

|0n〉 |ψj〉 → |floor(λj2
n)〉 |ψj〉 (5.26)

so therefore the circuit in (5.17) is an estimator without phases and garbage as desired.

The proof is complete, up to the fact that |TrA(ρ)|1 ≤ |ρ|1 for all ρ and subsystems

A. Write ρ in terms of its eigendecomposition ρ =
∑
i λi |φi〉 〈φi|, and let ρi := TrA(|φi〉 〈φi|):

|TrA(ρ)|1 =

∣∣∣∣∣TrA

(∑
i

λi |φi〉 〈φi|

)∣∣∣∣∣
1

=

∣∣∣∣∣∑
i

λiρi

∣∣∣∣∣
1

≤
∑
i

|λi| · |ρi|1 = |ρ|1 (5.27)
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This establishes that uncomputation works in the approximate case as expected.

While we are reasoning about the diamond norm, we also present the following technical

tool which will come in handy several times. In particular, we will need it for our analysis

of textbook phase estimation.

Lemma 5.4. Diamond norm from spectral norm. Say U, V are unitary matrices

satisfying |U − V | ≤ δ. Then the channels ΓU (ρ) := UρU† and ΓV (ρ) := V ρV † satisfy

|ΓU − ΓV |� ≤ 2δ.

Proof. We have that:

|ΓU − ΓV |� := sup
ρ
|(ΓU ⊗ I)(ρ)− (ΓV ⊗ I)(ρ)|1 (5.28)

= sup
ρ

∣∣(U ⊗ I)ρ(U ⊗ I)† − (V ⊗ I)ρ(V ⊗ I)†
∣∣
1

(5.29)

where I was the identity channel on some subsystem of dimension larger than that of U, V ,

and |M |1 is the sum of the magnitudes of the singular values of M .

Let Ū = U ⊗ I and V̄ = V ⊗ I. Then:

∣∣Ū − V̄ ∣∣ = |U ⊗ I − V ⊗ I| = |(U − V )⊗ I| = |U − V | ≤ δ (5.30)

If we let Ē := Ū − V̄ we can proceed with the upper bound:

|ΓU − ΓV |� = sup
ρ

∣∣ŪρŪ† − V̄ ρV̄ †∣∣
1

(5.31)

= sup
ρ

∣∣ŪρŪ† − V̄ ρV̄ † +
(
ŪρV † − UρV †

)∣∣
1

(5.32)

= sup
ρ

∣∣(ŪρŪ† − UρV †)− (V̄ ρV̄ † − ŪρV †)∣∣
1

(5.33)

= sup
ρ

∣∣Ūρ(Ū − V̄ )† + (Ū − V̄ )ρV̄ †
∣∣
1

(5.34)

≤ δ + δ (5.35)
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Now we have all the tools required to analyze the textbook algorithm [NC00]. This

algorithm combines several applications of controlled-U with an inverse QFT to obtain the

correct estimate with a decent probability. One can then improve the success probability

via median amplification: if a single estimate is correct with probability ≥ 1
2 + η for some

η then the median of dln(δ−1)/2η2e estimates is incorrect with probability ≤ δ.

However, median amplification alone is not sufficient to accomplish phase estimation

as we have defined it in Definition 5.1. This is because any λi that is ≈ 10% · 2−n−1 close

to a multiple of 1/2n, the probability of correctly obtaining floor(2nλj) is actually less than

1/2! This means that no matter how much median amplification is performed, this approach

cannot achieve α below ≈ 10%. (For reference, a lower bound γ on the probability is plotted

in Figure 5.1, although reading this figure demands some notation from the proof of the

following proposition. We see that when |λ(x)
j − 1/2| . 10%/2 the probability of obtaining

floor(2nλj) is less than 1/2.)

Furthermore, even if the signal obtained from the QFT could obtain arbitrarily small

α, it would not achieve the desired α−1 scaling. This is because the amplification gap η

scales linearly with α, and median amplification scales as η−2 due to the Chernoff-Hoeffding

theorem. Therefore, we would obtain a scaling of α−2.

Fortunately, achieving ∼ α−1 is possible, using a different method for reducing α:

we perform estimation for r additional bits which are then ignored. This makes use of

the fact that α is independent of the number of estimated bits, but the gap away from

the multiples of 1/2n, which is α/2n+1, is not. Every time we increase n, the width of
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each disallowed interval is chopped in half, but to compensate the number of disallowed

intervals is doubled. If we simply round away some of the bits, then we do not care about

the additional disallowed regions introduced. If we estimate and round r additional bits,

we suppress α by a factor of 2−r while multiplying our runtime by a factor of 2r - so the

scaling is ∼ α−1.

We still need median amplification, though. In order to use the above strategy

we need rounding to be successful: if an eigenvalue λj falls between two bins floor(2nλj)

and floor(2nλj) + 1, then it must be guaranteed to be rounded to one of those bins with

failure probability at most δ. Before amplification, the probability that rounding succeeds

is ≥ 8/π2, a constant gap above 1/2 corresponding to α = 1/2. We cannot guarantee a

success probability higher than 8/π2 using the rounding trick alone, and thus need median

amplification to finish the job.

Below, we split our analysis into two regimes: the α ≤ 1/2 regime and the α > 1/2

regime. When α > 1/2 then we do not really need the rounding trick described above, and

we can achieve this accuracy with median amplification alone. Otherwise when α ≤ 1/2 we

use median amplification to get to the point where rounding is likely to succeed, and then

estimate r additional bits such that α2r ≥ 1/2.

Proposition 5.5. Standard phase estimation. There exists an phase estimator with

phases and garbage. Consider a unitary satisfying an (n, α)-rounding promise. Let:

γ(x) :=
sin2(πx)

π2x2
η0 :=

8

π2
− 1

2
δmed :=

δ2

6.25
(5.36)

If α ≤ 1/2,let r :=
⌈
log2

(
1

2α

)⌉
. Then the phase estimator has query complexity:

(2n+r − 1) ·
⌈

ln(δ−1
med)

2η2
0

⌉
(5.37)
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and has (n+ r)
⌈

ln(δ−1
med)

2η20

⌉
qubits of garbage.

Otherwise, if α > 1/2, let η := γ
(

1−α
2

)
− 1

2 . Then the phase estimator has query

complexity:

(2n − 1) ·
⌈

ln(δ−1
med)

2η2

⌉
(5.38)

and has n
⌈

ln(δ−1
med)

2η2

⌉
qubits of garbage.

Proof. We begin with the α > 1/2 case which is simpler, and then extend to the α ≤ 1/2

case. The following is a review of phase estimation, which has been modified to estimate

floor(2nλj) rather than round (2nλj):

1. Prepare a uniform superposition over times: |+n〉 |ψj〉 = 1√
2n

∑2n−1
t=0 |t〉 |ψj〉.

2. Apply U to the |ψj〉 register t times, along with an additional phase shift of −2πt(1−α)
2n+1

to account for flooring:

→ 1√
2n

2n−1∑
t=0

|t〉 ⊗ U te−
2πit(1−α)

2n+1 |ψj〉 =
1√
2n

2n−1∑
t=0

e2πit(λj− 1−α
2n+1 ) |t〉 |ψj〉 (5.39)

3. Apply an inverse quantum Fourier transform to the |t〉 register:

→ 1

2n

2n−1∑
t=0

2n−1∑
x=0

e2πit(λj− 1−α
2n+1 )e−

2πi
2n tx |x〉 |ψj〉 (5.40)

=

2n−1∑
x=0

[
1

2n

2n−1∑
t=0

e2iπt(λj− x
2n−

1−α
2n+1 )

]
|x〉 |ψj〉 (5.41)

=

2n−1∑
x=0

β
(
λ

(x)
j

)
|x〉 |ψj〉 (5.42)
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where in the final line we have defined:

λ
(x)
j := 2nλj − x−

1− α
2

(5.43)

β(λ
(x)
j ) :=

1

2n

2n−1∑
t=0

e2πitλ
(x)
j /2n . (5.44)

4. Let η and δmed be as in the theorem statement, and let:

M :=

⌈
log(δ−1

med)

2η2

⌉
(5.45)

Repeat the above process for a total of M times. If we sum ~x over {0, ..., 2n − 1}M ,

then we obtain:

→
∑
~x

M⊗
l=1

β
(
λ

(xl)
j

)
|kl〉 ⊗ |ψj〉 (5.46)

5. Run a sorting network, e.g. [Beals&12], on the M estimates, and copy the median

into the output register.

The query complexity analysis is straightforward: each estimate requires 2n − 1

applications of controlled-U , and there are M estimates. So all we must do is demonstrate

accuracy. It is clear that the process above implements a map of the form:

|0n〉 |0...0〉 |ψj〉 →
2n−1∑
x=0

eiϕj,x
√
pj,x |x〉 |garj,k〉 |ψj〉 (5.47)

for some probabilities pj,x and phases ϕj,x, since this is just a general description of a unitary

map that leaves the |ψj〉 register intact. This way of writing the map lets us bound the

error in diamond norm to the ideal map

|0n〉 |0...0〉 |ψj〉 → eiϕj |floor(λj2
n)〉 |garj〉 |ψj〉 (5.48)
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(selecting ϕj := ϕj,floor(λj2n) and |garj〉 := |garj,floor(λj2n)〉) without uncomputing while still

employing the standard analysis of phase estimation which just reasons about the probabil-

ities pj,x. These can be bounded from a median amplification analysis of the probabilities∣∣∣β (λ(x)
j

)∣∣∣2. Consider a vector of M estimates ~x. Then:

pj,x :=
∑

~x where
median(~x)=x

M∏
l=1

∣∣∣β(λ
(xl)
j )

∣∣∣2 (5.49)

First we show that probabilities
∣∣∣β (λ(x)

j

)∣∣∣2 associated with the individual estimates

are bounded away from 1
2 . Using some identities we can rewrite:

|β(λ
(x)
j )|2 =

∣∣∣∣∣ 1

2n

2n−1∑
t=0

e2iπtλ
(x)
j /2n

∣∣∣∣∣
2

(5.50)

=

∣∣∣∣∣ 1

2n
e2iπλ

(x)
j − 1

e2iπλ
(x)
j /2n − 1

∣∣∣∣∣
2

(5.51)

=
1

4n
sin2(2πλ

(x)
j ) + (cos(2πλ

(x)
j )− 1)2

sin2(2πλ
(x)
j /2n) + (cos(2πλ

(x)
j /2n)− 1)2

(5.52)

=
1

4n
2− 2 cos(2πλ

(x)
j )

2− 2 cos(2πλ
(x)
j /2n)

(5.53)

=
1

4n
sin2(πλ

(x)
j )

sin2(πλ
(x)
j /2n)

(5.54)

Using the small angle approximation sin(θ) ≤ θ for 0 ≤ θ ≤ π, we can derive:

|β(λ
(x)
j )|2 =

1

4n
sin2(πλ

(x)
j )

sin2(πλ
(x)
j /2n)

≥ 1

4n
sin2(πλ

(x)
j )

π2(λ
(x)
j )2/4n

=
sin2(πλ

(x)
j )

π2(λ
(x)
j )2

=: γ(λ
(x)
j ) (5.55)

γ(λ
(x)
j ) is a very tight lower bound to |β(λ

(x)
j )|2, and is plotted in Figure 5.1. We

would like this probability to be larger than 1
2 + η for some η when λj satisfies a rounding

promise. This is guaranteed if we select:

η := γ

(
1− α

2

)
− 1

2
(5.56)
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as in the theorem statement. From the figure, we see that when α > 1/2 then η > η0.

This fact actually is not necessary for this construction to work, but observing this will be

useful for the α ≤ 1/2 case. However, it is necessary to observe that when α > 1/2 we are

guaranteed that η is positive.

Then, from the rounding promise and the definition of λ
(x)
j , we are guaranteed

that when x = floor(2nλj) then |β(λ
(x)
j )|2 ≥ 1/2 + η. Now we perform a standard median

amplification analysis. The probability of a particular estimate x being ‘correct’ is ≥ 1/2+η,

so the probability of being incorrect is ≤ 1/2−η. The only way that a median of M estimates

can be incorrect is if more than half of the estimates are incorrect. Let X be the random

variable counting the number of incorrect estimates. Then we can invoke the Chernoff-

Hoeffding theorem:

Pr[median incorrect] ≤ Pr [X ≥M/2] (5.57)

≤ Pr [X ≥M/2 + E(X)− (1/2− η)M ] (5.58)

≤ exp
(
−2Mη2

)
(5.59)

We can bound the above by δmed, a constant we will fix later, if we select M :=
⌈

log(δ−1
med)

2η2

⌉
as we did above.

We have demonstrated that pj,x ≥ 1 − δmed whenever x = floor(2nλj). Now all

that remains is a bound on the error in diamond norm. We begin by bounding the spectral

norm. Let pj := pj,floor(2nλj) and observe that 1 ≥ pj ≥ 1 − δmed. Taking the difference

126



between equations (5.47) and (5.48) we obtain:∣∣∣∣∣∣(√pj − 1)eiϕj |floor(λj2
n)〉 |garj〉 |ψj〉+

∑
x,x 6=floor(λj2n)

eiϕj,x
√
pj,x |x〉 |garj,x〉 |ψj〉

∣∣∣∣∣∣ (5.60)

=

√
|(√pj − 1)eiϕj |2 +

∑
x,x 6=floor(λj2n)

∣∣eiϕj,x√pj,x∣∣2 (5.61)

=

√
(
√
pj − 1)2 +

∑
x,x 6=floor(λj2n)

pjk (5.62)

≤
√

(1−
√

1− δmed)2 + δmed (5.63)

≤
√

2− 2
√

1− δmed − δmed + δmed (5.64)

≤
√

2− 2
√

1− δmed (5.65)

Now we apply Lemma 5.4 to bound the diamond norm, and since the error is ∼
√
δmed to

leading order, we construct a bound that holds whenever
√
δmed ≤ 1:

2

√
2− 2

√
1− δmed ≤ 2.5

√
δmed (5.66)

If we select δmed := δ2/6.25 then the diamond norm is bounded by δ.

Having completed the α > 1/2 case, we proceed to the α ≤ 1/2 case. As stated

above, the construction we just gave actually also works when α ≤ 1/2. However, the

asymptotic dependence on α is like ∼ α−2 which is not optimal.

Looking again at Figure 5.1, we see that the sum of the probability of two adjacent

bins is at least 8/π2, even when λ
(x)
j is in a region disallowed by the rounding promise.

Therefore, if we perform median amplification with gap parameter η0 we are guaranteed

that values of λ
(x)
j that fall into a rounding gap will at least be rounded to an adjacent bin.

We can use this fact to achieve an ∼ α−1 dependence. Recall that α is the fraction of

the range [0, 1) where λj are not allowed to appear due to the rounding promise, independent

127



of n. If we perform phase estimation with n + 1 rather than n, then the width of each

disallowed region is cut in half from α2−n to α2−n−1 - but we also double the number

of disallowed regions. However, if we simply ignore the final bit, then, because we are

amplifying to η0, any values of λj that fall into one of the newly introduced regions will

simply be rounded. Thus, we cut the gaps in half without introducing any new gaps, so α

is cut in half. We will make this argument more formal in a moment.

So, in order to achieve a particular α, we observe from Figure 5.1 that if we amplify

to η0 then the gaps have width 1
2 · 2

−n. If we estimate an additional r bits, then the gaps

have width 1
2 · 2

−n−r. Solving 1
2 · 2

−n−r ≤ α2−n for r, we obtain

r :=

⌈
log2

(
1

2α

)⌉
. (5.67)

We briefly make the n explicit in λ
(x)
j by writing λ

(n,x)
j . After running the protocol

at the beginning of the proof with n+ r bits, we obtain, for ~x ∈ {0, ..., 2n − 1}M , the state:

∑
~x

|median(~x)〉 ⊗
M⊗
l=1

2r−1∑
t=0

β(λ
(n+r, 2rxl+t)
j ) |2rkl + t〉 ⊗ |ψj〉 (5.68)

=

2n−1∑
x=0

|x〉 ⊗
∑

~x where
median(~x)=kx

M⊗
l=1

2r−1∑
t=0

β(λ
(n+r, 2rxl+t)
j ) |2rxl + t〉 ⊗ |ψj〉 (5.69)

=

2n−1∑
x=0

√
pj,xe

iϕj,x |x〉 ⊗ |garj,x〉 ⊗ |ψj〉 (5.70)

where in the last step we have defined the normalized state |garx〉, the probability pj,x, and

the phase ϕj,x via:

√
pj,xe

iϕj,x |garj,x〉 :=
∑

~x where
median(~x)=x

M⊗
l=1

2r−1∑
t=0

β(λ
(n+r, 2rxl+t)
j ) |2rxl + t〉 (5.71)
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Now if we can demonstrate that pj,x ≥ 1 − δmed when x = floor(2nλj) then the same

argument as in (5.60-5.65) holds and we are done. Observe that:

pj,x :=
∑

~x where
median(~x)=x

M∏
l=1

2r−1∑
t=0

∣∣∣β(λ
(n+r, 2rxl+t)
j )

∣∣∣2 (5.72)

Say x = floor(2nλj). Then, consider t := floor(2n+rλj) − x2r, which is an integer

∈ {0, ..., 2r − 1}. Then, looking at Figure 5.1, we see that:

|β(λ
(n+r, 2rx+t)
j )|2 + |β(λ

(n+r, 2rx+t+1)
j )|2 ≥ γ(λ

(n+r, 2rx+t)
j ) + γ(λ

(n+r, 2rx+t)
j − 1) ≥ 1

2
+ η0

(5.73)

Therefore the probability that the first n bits are x is
∑2r−1
t=0

∣∣∣β(λ
(n+r, 2rx+t)
j )

∣∣∣2 ≥
1/2 + η0, which is all that was required to perform the median amplification argument

above. So we can conclude that pj,k ≥ 1− δmed, so the modified algorithm retains the same

accuracy.

5.2 Coherent Iterative Estimation

In this section we present the novel algorithms for phase estimation and energy

estimation. As described in the introduction, both of these feature a strong similarity to

‘iterative phase estimation’ [Kit95], where the bits of the estimate are obtained one at a

time. Unlike iterative phase estimation however, the state is never measured and the entire

process is coherent. We therefore name these algorithms as ‘coherent iterative estimators’.

Another similarity that these new algorithms share with the original iterative phase

estimation is that the less significant bits are taken into account when obtaining the current

bit. This greatly reduces the amount of amplification required for the later bits, so the
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runtime is vastly dominated by the estimation of the least significant bit. We will go into

more detail on this later.

To permit discussion of coherent iterative estimation of phases and energies in a

unified manner, we fit this idea into the modular framework of Definition 5.2 and Lemma 5.3.

A ‘coherent iterative estimator’ obtains a single bit of the estimate, given access to all the

previous bits. Several invocations of a coherent iterative estimator yield a regular estimator

as in Definition 5.2. Furthermore, we can choose to uncompute the garbage at the very end

using Lemma 5.3, or, as we will show, we can remove the garbage early, which prevents it

from piling up.

Definition 5.6. A coherent iterative phase estimator is a protocol that, given some n,

α, any k ∈ {0, ..., n− 1}, and any error target δ > 0, produces a quantum circuit involving

calls to controlled-U and U†. If the unitary U satisfies an (n, α)-rounding promise, then this

circuit implements a quantum channel that is δ-close to some map that performs:

|0〉 |∆k〉 |ψj〉 → |bitk (λj)〉 |∆k〉 |ψj〉 (5.74)

Here bitk(λj) is the (k+1)’th least significant bit of an n-bit binary expansion, and |∆k〉 is a

k-qubit register encoding the k least significant bits. (For example, if n = 4 and λj = 0.1011...

then bit2(λj) = 0 and ∆2 = 11.) Note that the target map is only constrained on a subspace

of the input Hilbert space, and can be anything else on the rest.

An coherent iterative energy estimator is the same thing, just with controlled-

UH and U†H queries to some block encoding UH of a Hamiltonian H that satisfies an (n, α)-

rounding promise.
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A coherent iterative estimator can also be with garbage and/or with phases, just like

in Definition 5.2.

Lemma 5.7. Stitching together coherent iterative estimators. Given a coherent

iterative phase/energy estimator with query complexity Q(n, k′, α, δ′), we can construct a

non-iterative phase/energy estimator with query complexity:

n−1∑
k=0

Q
(
n, k, α, δ · 2−k−1

)
(5.75)

The non-iterative estimator has phases if and only if the coherent iterative estimator has

phases, and if the coherent iterative estimator has m qubits of garbage then the iterative

estimator has nm qubits of garbage.

Proof. We will combine nmany coherent iterative phase/energy estimators, for k = 0, 1, 2, .., n−

1. The diamond norm satisfies a triangle inequality so if we let the k’th iterative estimator

have an error δk := δ2−k−1 then the overall error will be:

n−1∑
k=0

δk ≤
δ

2

n−1∑
k=0

2−k =
δ

2
(2− 21−n) ≤ δ (5.76)

So now all that is left is to observe that the exact iterative estimators chain together correctly.

This should be clear by observing that for all k > 0:

|∆k〉 = |bitk−1(λj)〉 ⊗ ...⊗ |bit0(λj)〉 (5.77)

and |∆0〉 = 1 ∈ C since when k = 0 there are no less significant bits. So the k’th iterative

estimator takes the k least significant bits as input and computes one more bit, until finally

at k = n− 1 we have:

|bitn−1(λj)〉 |∆n−1〉 = |bitn−1(λj)〉 ⊗ ...⊗ |bit0(λj)〉 = |floor(2nλj)〉 (5.78)
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The total query complexity is just the sum of the n invocations of the iterative estimators

from k = 0, ..., n− 1 with error δk.

If the iterative estimator has garbage, then the garbage from each of the n invoca-

tions just piles up. Similarly, if the estimator is with phases, and has an eiϕj,k for the k’th

invocation, then the composition of the maps will have a phase
∏n−1
k=0 e

iϕj,k .

Lemma 5.8. Removing garbage and phases from iterative estimators. Given a

coherent iterative phase/energy estimator with phases and/or garbage and with query com-

plexity Q(n, k, α, δ′) that has a unitary implementation, we can construct a coherent it-

erative phase/energy estimator without phases and without garbage with query complexity

2Q(n, k, α, δ/2).

Proof. This argument proceeds exactly the same as Lemma 5.3, just with the extra |∆k〉

register trailing along. If Λ is the channel that implements the iterative estimator with

garbage and/or phases, then we obtain an estimator without garbage and phases via:

|0〉

|0〉

Λ

•

Λ−1

discard

|0...0〉 discard

|∆k〉

|φj〉

(5.79)

The advantage of the modular framework we just presented is that maximizes the

amount of flexibility when implementing these algorithms. How exactly uncomputation is

performed will vary from application to application, and depending on the situation uncom-
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putation may be performed before invoking Lemma 5.7 using Lemma 5.8, after Lemma 5.7

using Lemma 5.3, or not at all!

Of course, the idea of uncomputation combined with iterative estimation itself is

quite simple, so given a complete understanding of the techniques we present the reader may

be able to perform this modularization themselves. However, we found that this presenta-

tion significantly de-clutters the presentation of the main algorithms, those that actually

implement the coherent iterative estimators from Definition 5.6. While the intuitive concept

behind these strategies is not so complicated, the rigorous presentation and error analysis

is quite intricate. We therefore prefer to discuss uncomputation separately.

5.2.1 Coherent Iterative Phase Estimation

This section describes our first novel algorithm, presented in Theorem 5.9. Before

stating the algorithm in complete detail, performing an error analysis, and showing how to

optimize the performance up to constant factors, we outline the tools that we will need and

give an intuitive description.

As stated in the introduction, a very similar algorithm was independently discovered

by [MRTC21]. The techniques of the two algorithms for phase estimation feature some

minor differences: our work is more interested in maintaining coherence of the input state,

the algorithm’s constant-factor runtime improvement over prior art, and our runtime is

O(2n) rather than O(n2n) (O(n) vs O(n log n) respectively in the language of [MRTC21]).

On the other hand, [MRTC21] elegantly show how a quantum Fourier transform emerges as

a special case of the algorithm, and their presentation is significantly more accessible. Both

methods avoid use of ancillae entirely.
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A key tool for these algorithms is the block encoding from Definition 3.6, which

allows us to manipulate arbitrary non-unitary matrices.

A unitary matrix is a trivial block encoding of itself. In this sense, we already have

a block encoding of the matrix:

U =
∑
j

e2πiλj |ψj〉 〈ψj | (5.80)

Recall that the goal of the coherent iterative estimator is to compute bitk(λj). The

strategy involves preparing an approximate block encoding of:

∑
j

bitk(λj) |ψj〉 〈ψj | (5.81)

We begin by rewriting the above expression a bit. Recall that ∆k is an integer from

0 to 2k+1 − 1 encoding the k less significant bits of λj . If we subtract ∆k/2
n from λj , we

obtain a multiple of 1/2n−k plus something < 1/2n which we floor away. Then, bitk(λj)

indicates if this is an even or an odd multiple. That means we can write:

bitk(λj) = parity

(
floor

(
2n−k

(
λj −

∆k

2n

)))
(5.82)

Since λj − ∆k

2n is a multiple of 1/2n−k plus something < 1/2n, we equivalently have

that 2n−k
(
λj − ∆k

2n

)
is an integer plus something less than 1/2k. For such values, we can

write the parity(floor(x)) function in terms of a squared cosine that has been ‘amplified’:

parity(floor(x)) = amp
(

cos2
(π

2
[x+ φ]

))
(5.83)

amp(x) =

{
1 if x > 1/2
0 if x < 1/2

(5.84)
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where the shift φ centers the extrema of the cosine in the intervals where x occurs. Therefore:

bitk(λj) = amp

(
cos2

(
π

2

[
2n−k

(
λj −

∆k

2n

)
+ φ

]))
(5.85)

= amp

(
cos2

(
π

[
2n−k−1

(
λj −

∆k

2n

)
+ φ/2

]))
(5.86)

= amp
(

cos2
(
πλ

(k)
j

))
(5.87)

Where we have defined:

λ
(k)
j := 2n−k−1

(
λj −

∆k

2n

)
+ φk (5.88)

for some k-dependent choice of phase φk = φ/2.

By applying a phase shift conditioned on the |∆k〉 register, and then iterating it

2n−k−1 times, we can construct a block encoding of the unitary with eigenvalues λ
(k)
j . Our

goal is now to transform this unitary as follows:

∑
j

e2πiλ
(k)
j |ψj〉 〈ψj | →

∑
j

[
amp

(
cos2

(
πλ

(k)
j

))]
|ψj〉 〈ψj | (5.89)

To obtain a cosine use linear combinations of unitaries [BCK15, CKS15] to take a take a

linear combination with the identity:

∑
j

e2πiλ
(k)
j + 1

2
|ψj〉 〈ψj | =

∑
j

cos
(
πλ

(k)
j

) [
eiπλ

(k)
j |ψj〉

]
〈ψj | (5.90)

=
∑
j

∣∣∣cos
(
πλ

(k)
j

)∣∣∣ · [±eiπλ(k)
j |ψj〉

]
〈ψj | (5.91)

where on the previous line ± indicates sign
(

cos
(
πλ

(k)
j

))
. This way the above is a singular

value decomposition of the block-encoded matrix. So all that is left to do is to approximately

transform the singular values a of the matrix above by:

a→ amp(a2) (5.92)
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We will accomplish this using singular value transformation. See Theorem 3.17. We will

also be making use of Remark 3.19.

Singular value transformation can perform the desired conversion if we can construct

a polynomial A(x) such that:

A(x) ≈ amp(x) =
1

2
− 1

2
sign(2x− 1) (5.93)

If we invoke the above lemma with the even polynomial A(x2) we get an approximation to

the desired block encoding of
∑
j bitk(λj) |ψj〉 〈ψj |.

In particular, the behavior we must capture in the polynomial approximation is

that A(x) ≈ 1 when x ∈ [0, 1/2 − η] and A(x) ≈ 0 when x ∈ [1/2 + η, 1] for some gap η

away from 1/2. If we view the input x as a probability, then A(x) essentially ‘amplifies’ this

probability to something close to 0 or 1 (and additionally flips the outcome). We hence call

A(x) an ‘amplifying polynomial’.

One approach to constructing such an amplifying polynomial is to simply adapt a

classical algorithm for amplification. We stated this method in the introduction: the polyno-

mial is the probability that the majority vote of several coin tosses is heads, where each coin

comes up heads with probability x. Then the desired properties can be obtained from the

Chernoff-Hoeffding theorem [Diak09]. The number of coins we have to toss to accomplish a

particular η, δ is the degree of the polynomial, which is bounded by O(η−2 log(δ−1)).

However, this polynomial does not achieve the optimal η dependence of O(η−1).

This might be achieved by a polynomial inspired by a quantum algorithm for approximate

counting, which does achieve the O(η−1) dependence. But rather than go through such

a complicated construction we simply adapt a polynomial approximation to the sign(x)
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function developed in [LC17], which accomplishes the optimal O(η−1 log(δ−1)). This is

presented in Corollary 3.23.

The method for obtaining Mη→δ given η and δ is complicated enough that it is not

worth re-stating here. However, the complexity is by all means worth it: in our numerical

analyses we found that the polynomials presented in Appendix A of [LC17] feature excellent

performance in terms of degree. This is a major source of the query complexity speedup of

our algorithms.

The value of δ is chosen such that the final error in diamond norm is bounded.

The value of η depends on how far away cos2
(
πλ

(k)
j

)
is from 1

2 . Of course, there are

several possible values of λ
(k)
j where cos2

(
πλ

(k)
j

)
= 1

2 exactly, so η = 0 and amplification

is impossible. This is where the rounding promise comes in: it ensures that λ∆ is always

sufficiently far from such values, so that we can guarantee that cos2
(
πλ

(k)
j

)
is always either

≥ 1
2 + α

2 or ≤ 1
2 + α

2 . So we select η = α/2.

When k = 0 then indeed the rounding promise is the only thing guaranteeing that

amplification will succeed. However, if the less significant bits have already been computed

then the set of values that λ
(k)
j can take is restricted. This is because the previous bits of λj

have been subtracted off. This widens the region around the solutions of cos2
(
πλ

(k)
j

)
= 1

2

where λ∆ cannot be found, allowing us to increase η. Furthermore, this can be done without

relying on the rounding promise anymore: bits with k ≥ 1 are guaranteed to be deterministic

even if no rounding promise is present. That means that if the rounding promise is violated,

then only the least significant bit can be wrong. The polynomials are sketched in Figure 5.2.

After constructing the amplifying polynomial Aη→δ, we use singular value trans-

formation to apply Aη→δ(x
2) which is even and therefore fixed parity as required by The-
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orem 3.17. Now we have an approximate block encoding of
∑
j bitk(λj) |ψj〉 〈ψj |, which is

in fact a projector. In the introduction we stated that we would use a block-measurement

theorem to compute the map:

|0〉 ⊗ |ψ〉 → |1〉 ⊗Π |ψ〉+ |0〉 ⊗ (I −Π) |ψ〉 (5.94)

given an approximate block encoding of Π. However, this general tool involves uncomputa-

tion which we specifically wanted to modularize. The fact that we are already measuring

errors in terms of the diamond norm means that Lemmas 5.3 and 5.8 are already capable

of dealing with garbage. We therefore defer the proof of this general tool to Section 5.4,

specifically Theorem 5.16.

There is another reason to not use Theorem 5.16 in a black-box fashion, specifically

for coherent iterative phase estimation. The block encoding of
∑
j bitk(λj) |ψj〉 〈ψj | actually

features only one ancilla qubit: the qubit we used to take the linear combination of U and

the identity. That means that the block encoding itself is already very close to the map

|0〉 ⊗ |ψ〉 → |0〉 ⊗ Π |ψ〉 + |1〉 ⊗ (I − Π) |ψ〉 (note the flipped output qubit). The details of

this usage of the block encoding will appear in the proof.

This completes the sketch of the procedure to implement the map

|0〉 |∆k〉 |ψj〉 → eiϕj |bitk (λj)〉 |∆k〉 |ψj〉 (5.95)

for some phases ϕj . We can now state the protocol in detail, and perform the accuracy

analysis.

Theorem 5.9. Coherent Iterative Phase Estimation. There is a coherent iterative

phase estimator with phases (and no garbage) and with query complexity:

2n−k ·Mη→δamp
(5.96)

138



where in the above Mη→δ is as in Corollary 3.23, η := 1
2 −

1
2k

(
1
2 + α

2

)
if k ≥ 1 and η := α

2

if k = 0, and δamp can be chosen to be (1− 10−m)δ2/24 for any m > 0.

Proof. We construct the estimator as follows:

1. Construct a unitary that performs a phase shift depending on ∆k - we call this

e−2πi∆̂k/2
n

employing some notation inspired by physics literature.

e−2πi∆̂k/2
n

:=

2k−1∑
∆k=0

e−2πi∆/2n |∆k〉 〈∆k| =
k−1⊗
j=0

e−2πiπ2j−n (5.97)

2. Rewrite the oracle unitary in this notation:

e2πiλ̂ := U =
∑
j

e2πiλj |ψj〉 〈ψj | (5.98)

Then define:

φ0 := 1−mean

(
1

2
+
α

2
, 1

)
(5.99)

φk := 1−mean

(
1

2
,

1

2
+

1

2k

(
1

2
+
α

2

))
if k ≥ 1 (5.100)

λ̂(k) := 2n−k−1

(
λ̂− ∆̂k

2n

)
+ φk, (5.101)

and implement the corresponding phase shift:

e2πiλ̂(k)

:=
(
e−2πi∆̂k/2

n

⊗ e2πiλ̂
)2n−k−1

· e2πiφk (5.102)

This unitary acts jointly on the |∆k〉 and |ψj〉 inputs. Since k ∈ {0, ..., n − 1}, the

exponent 2n−k−1 is always an integer.

3. Let H̃ := 1√
2

[
1 1
i −i

]
be a slightly modified Hadamard gate, and consider the following
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unitary, implemented via e2πiλ̂(k)

:

U
(k)
signal :=

H̃ • H̃T

|∆k〉
e2πiλ̂(k)

|ψj〉

(5.103)

Observe that:

U
(k)
signal =

∑
∆k

∑
j

H̃

[
1 0

0 e2πiλ
(k)
j

]
H̃T ⊗ |∆k〉 〈∆k| ⊗ |ψj〉 〈ψj | (5.104)

=
∑
∆k

∑
j

eπiλ
(k)
j · H̃

[
e−πiλ

(k)
j 0

0 eπiλ
(k)
j

]
H̃T ⊗ |∆k〉 〈∆k| ⊗ |ψj〉 〈ψj | (5.105)

=
∑
∆k

∑
j

eπiλ
(k)
j ·

cos
(
πλ

(k)
j

)
sin
(
πλ

(k)
j

)
sin
(
πλ

(k)
j

)
− cos

(
πλ

(k)
j

)⊗ |∆k〉 〈∆k| ⊗ |ψj〉 〈ψj |

(5.106)

In other words, U
(k)
signal is a block encoding of:

∑
∆k

∑
j

∣∣∣cos
(
πλ

(k)
j

)∣∣∣ [±eπiλkj |∆k〉 |ψj〉
]

[〈∆k| 〈ψj |] (5.107)

The above is a singular value decomposition of the block-encoded matrix.

4. Choose the amplification threshold via:

ηk :=
1

2
− 1

2k

(
1

2
+
α

2

)
if k ≥ 1 (5.108)

η0 :=
α

2
(5.109)

Also, let δamp < 1 be an error threshold we will pick later. Now, let Aη→δamp
(x) be the

polynomial from Corollary 3.23. Viewing U
(k)
signal as a block encoding of cos

(
πλ

(k)
j

)
,

apply singular value transformation as in Theorem 3.17 to U
(k)
signal with a polynomial

p̃(x) approximating Aη→δamp
(x2) to accuracy δsvt, which we also pick later.

Theorem 3.17 applies because Aη→δamp
(x2) is even. Furthermore, U

(k)
signal only has

one ancilla qubit, and has the special form where the it implements a reflection on
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the ancilla (5.106). Thus, by Remark 3.19 the circuit from Theorem 3.17 can be

constructed to just have one ancilla.

Call the resulting circuit U
(k)
svt , which implements the unitary:

U
(k)
svt =

∑
∆k

∑
j

[
p̃
(

cos
(
πλ

(k)
j

))
·

γ(λ
(k)
j ) ·

]
⊗ [|∆k〉 |ψj〉] [〈∆k| 〈ψj |] (5.110)

for some matrix element γ(λ
(k)
j ).

Now we prove that U
(k)
svt is an iterative phase estimator with phases. It implements

the map:

|0〉 |∆k〉 |ψj〉 →
(
p̃
(

cos
(
πλ

(k)
j

))
|0〉+ γ(λ

(k)
j ) |1〉

)
|∆k〉 |ψj〉 (5.111)

Note that U
(k)
svt is a block encoding with only one ancilla, and that ancilla is the output

qubit of the map.

We must show that U
(k)
svt is close in diamond norm to a map that leaves the first qubit

as |bitk(λj)〉 whenever ∆k encodes the k least significant bits of an n-bit binary expansion

of λj .

To study this map we will proceed through the recipe above, proving statements

about the expressions encountered along the way. In step 2. we defined:

λ
(k)
j := 2n−k−1

(
λj −

∆̂k

2n

)
+ φk, (5.112)

We discuss the relationship between λ
(k)
j − φk and bitk(λj). If k = 0 then ∆k = 0,

and due to the rounding promise we find λj in regions of the form m
2n +

[
α
2n ,

1
2n

]
for integers

m. Thus, we find λ
(0)
j − φ0 in regions of the form m

2 +
[
α
2 ,

1
2

]
. The function bitk(λj) just

141



indicates the parity of m. We can also write this as:

bit0(λj) =

{
0 if λ

(0)
j − φ0 ∈ floor(λ

(0)
j − φ0) + [α2 ,

1
2 ]

1 if λ
(0)
j − φ0 ∈ floor(λ

(0)
j − φ0) + [ 1

2 + α
2 , 1]

(5.113)

If k > 0 then we also can show a similar property. While for k = 0 we used the

rounding promise to guarantee that λ
(0)
j − φ0 only falls into certain regions, for larger k we

simply use the fact that ∆k has been subtracted off in the definition of λ
(k)
j . That means

that the regions where bit<k(λj) = 1 are no longer possible. We find:

bitk(λj) =

{
0 if λ

(k)
j − φk ∈ floor(λ

(k)
j − φk) +

[
0, 1

2k

(
1
2 + α

2

)]
1 if λ

(k)
j − φk ∈ floor(λ

(k)
j − φk) +

[
1
2 ,

1
2 + 1

2k

(
1
2 + α

2

)] when k > 0

(5.114)

Note that the claim for k > 0 did not make use of the rounding promise, and is true

regardless of if the rounding promise holds. These regions are shown in Figure 5.3.

In step 3. we defined Usignal which is a block encoding of cos
(
πλ

(k)
j

)
. Later, this

will approximately be transformed by singular value transformation via x → Aη→δamp(x2),

so we employ a trigonometric identity:

cos2
(
πλ

(k)
j

)
=

1 + cos
(
2πλkj

)
2

(5.115)

Clearly this is a probability, and since cosine has period 2π, the floor(λ
(k)
j − φk) term does

not matter. We argue that this probability is either ≥ 1/2 + ηk or ≤ 1/2− ηk depending on

bitk(λj). See Figure 5.3. The idea is that the φk are chosen precisely so that the troughs and

peaks of cos2
(
πλkj

)
line up with the centers of the intervals corresponding to bitk(λj) = 0

and bitk(λj) = 1 respectively. Then, the nodes of cos2
(
πλkj

)
line up with the midpoints of

the gaps between the intervals. A line of slope 2 connecting a trough to a peak then forms

an upper/lower bound on cos2
(
πλkj

)
. If we select ηk := 1

2 −
1
2k

(
1
2 + α

2

)
if and η0 := α

2

then these bounds show that cos2
(
πλ

(k)
j

)
is alternatingly ≤ 1

2 − ηk and ≥ 1
2 + ηk.
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Then we have:

cos2(πλ
(k)
j ) is

{
≤ 1

2 + ηk if bitk(λj) = 0

≥ 1
2 − ηk if bitk(λj) = 1

(5.116)

By Corollary 3.23:

Aηk→δamp

(
cos2(πλ

(k)
j )
)

is

{
≤ δamp if bitk(λj) = 0

≥ 1− δamp if bitk(λj) = 1
(5.117)

And finally, since p̃(x) approximates Aηk→δamp
(x2) to accuracy δsvt:

p̃
(

cos(πλ
(k)
j )
)

is

{
≤ δamp + δsvt if bitk(λj) = 0

≥ 1− δamp − δsvt if bitk(λj) = 1
(5.118)

The circuit for Usvt is completely unitary, so the resulting state is normalized.

Therefore:

∣∣∣p̃(cos
(
πλ

(k)
j

))∣∣∣2 +
∣∣∣γ(λ

(k)
j )
∣∣∣2 = 1 (5.119)

Using this fact we can reason that if p̃
(

cos
(
πλ

(k)
j

))
≤ δamp +δsvt then |γ(λ

(k)
j )|2 ≥

1− (δamp + δsvt).

Similarly, if p̃
(

cos
(
πλ

(k)
j

))
≥ 1− δamp − δsvt, then:

|γ(λ
(k)
j )|2 ≤ 1− (1− (δamp + δsvt))

2 ≤ 2(δamp + δsvt)− (δamp + δsvt)
2 (5.120)

Now that we have bounds on the amplitudes of the output state, we can bound

its distance to |bitk(λj)〉 for a favorable choice of eiϕj . Say bitk(λj) = 0. Then we select
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ϕj = 0, so that:

∣∣∣(p̃(cos
(
πλ

(k)
j

))
|0〉+ γ(λ

(k)
j ) |1〉

)
− eiϕj |bitk(λj)〉

∣∣∣ (5.121)

≤
√∣∣∣p̃(cos

(
πλ

(k)
j

))
− 1
∣∣∣2 + |γ(λ∆)|2 (5.122)

≤
√

(δamp + δsvt)2 + 2(δamp + δsvt)− (δamp + δsvt)2 (5.123)

≤
√

2(δamp + δsvt) (5.124)

Otherwise, if bitk(λj) = 1, then we define ϕj by γ(λ
(k)
j ) = eiϕj |γ(λ

(k)
j )|. That way:

∣∣∣(p̃(cos
(
πλ

(k)
j

))
|0〉+ γ(λ

(k)
j ) |1〉

)
− eiϕj |bitk(λj)〉

∣∣∣ (5.125)

≤
√∣∣∣p̃(cos

(
πλ

(k)
j

))∣∣∣2 +
∣∣∣eiϕj (|γ(λ

(k)
j )| − 1)

∣∣∣2 (5.126)

≤
√
|δamp + δsvt|2 + |δamp + δsvt|2 (5.127)

≤
√

2(δamp + δsvt) (5.128)

So either way, the output state is within
√

2(δamp + δsvt) in spectral norm of that of the

ideal state. Thus, the unitary map Usvt is close in spectral norm to some ideal unitary.

Invoking Lemma 5.4, the distance in diamond norm is at most:

2
√

2(δamp + δsvt) ≤ δ (5.129)

The inequality above holds if we select, for any m > 0:

δamp := (1− 10−m) · δ
2

8
δsvt := 10−m · δ

2

8
(5.130)

This solution to the inequality relies on the fact that only δamp actually enters the query

complexity, so if classical resources are cheap but query complexity is expensive then we can

make the classical computer do as much work as possible by making m larger.
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Finally, we compute the query complexity. An invocation of e2πiλ̂
(k)
j requires 2n−k−1

invocations of U = e2πiλ̂. By Theorem 3.17, the number of queries made by the unitary Usvt

to Usignal is the degree of the polynomial. By Corollary 3.23, the polynomial Aη→δamp
(x2)

has degree 2 ·Mη→δ, so the query complexity is:

2n−k−1 · 2 ·Mη→δamp (5.131)

A really nice feature of the coherent iterative phase estimator we present is that

it produces no garbage qubits. All singular value transformation is performed on the final

output qubit. It does still produce extra phase shifts between the eigenstates, which in

some applications may still need to be be uncomputed. However, in applications where

phase differences between eigenstates do not matter, like thermal state preparation, we

expect that this uncomputation step can be skipped.

To finish the discussion of coherent iterative phase estimation, we stitch the iterative

estimator we just defined into a regular phase estimator. In doing so, we also remark on

what happens when no rounding promise is present. A summary of the construction is

presented in Figure 5.4.

Corollary 5.10. Improved phase estimation. The coherent iterative phase estimator

from Theorem 5.9 can be combined with Lemma 5.7 to make a phase estimator with phases

with query complexity at most:

O
(
2nα−1 log(δ−1)

)
(5.132)

assuming α is bounded away from 1 by a constant.
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Furthermore, if no rounding promise is given, then the estimator δ-approximates in

diamond norm a map:

|0n〉 |ψj〉 →
(
ξ |floor(2nλj)〉+ ζ |λ′j〉

)
|ψj〉 (5.133)

for some complex amplitudes ξ, ζ and λ′j = floor(2nλj)−1 mod 2n is an erroneous estimate.

The performance is the same, except that 0 < α < 1 can be any constant.

Proof. Write ηk := 1
2 −

1
2k

(
1
2 + α

2

)
if k ≥ 1 and η0 := α

2 if k = 0, and, following Lemma 5.7,

demand an accuracy of δamp,k := (1 − 10−m)(δ2−k−1)2/8 for the k’th bit. Recall from

Corollary 3.23 that Mηk→δamp ∈ O
(
η−1
k log(δ−1

amp)
)
. Then, the overall query complexity is:

n−1∑
k=0

2n−k ·Mηk→δamp,k
∈ O

(
n−1∑
k=0

2n−kη−1
k log(δ−1

amp,k)

)
(5.134)

= O

(
n−1∑
k=0

2n−kη−1
k log(2k+1δ−1)

)
(5.135)

When k = 0 we have η0 = α
2 , and when k > 0 we have ηk >

1−α
4 which is bounded from

below by a constant. We can use this to split the sum:

≤ O

(
2n−0η−1

0 log(20+1δ−1) +

n−1∑
k=1

2n−kη−1
k log(2k+1δ−1)

)
(5.136)

≤ O

(
2nα−1 log(δ−1) +

n−1∑
k=1

2k(k + log(δ−1))

)
(5.137)

≤ O
(
2nα−1 log(δ−1) + 2(2n − n− 1) + (2n − 2) log(δ−1)

)
(5.138)

≤ O
(
2nα−1 log(δ−1)

)
(5.139)

This completes the runtime analysis. Now we turn to the case when no rounding

promise is present. Notice that when k ≥ 1, the regions where λj is assumed not to appear

are guaranteed by the previous estimators definitely outputting 1 for previous bits regardless
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of the promise. Thus, the only bit that can be wrong is the first bit. When an eigenvalue λj

falls into a region disallowed by the rounding promise, the first bit will be some superposition

ξ |0〉+ ζ |1〉.

Flipping the final bit of an estimate in general results in an error of ±1. However,

recall that when estimating future bits the value of ∆k/2
n is subtracted off from λj . That

means that when we erroneously measure a 1, the rest of the algorithm proceeds to measure

λj − 1/2n instead. As a result, if the first bit is wrong, then the algorithm will output

floor(2nλj)− 1 instead. Since the algorithm is periodic in λj with period 1, the output will

be 2n − 1 if an error occurs when floor(2nλj) = 0.

Notice that if we had allocated the error evenly between the n steps, then we would

have incurred an extra O(2n log n) term in the above. Spreading the error via a geometric

series avoids this, and we find that we obtain better constant factors with this choice as well.

This is because the k = 0 term dominates, so we want to make δamp,k as large as possible.

5.2.2 Coherent Iterative Energy Estimation

While for phase estimation we are given access to
∑
j e

2πiλj |ψj〉 〈ψj |, for energy

estimation we have a block encoding of
∑
j λj |ψj〉 〈ψj |. For phase estimation we could

relatively easily synthesize a cosine in the eigenvalues, just by taking a linear combination

with the identity. But for energy estimation we must build the cosine directly.

To do so we leverage a tool employed by [GSLW18] to perform Hamiltonian sim-

ulation. The Jacobi-Anger expansion yields highly efficient polynomial approximations to

147



sin(tx) and cos(tx). To perform Hamiltonian simulation one then takes the linear combina-

tion cos(tx) + i sin(tx). However, we only need the cosine component.

Lemma 5.11. Jacobi-Anger expansion. For any t ∈ R+, and any ε ∈ (0, 1/e), let:

r(t′, ε′) := the solution to ε′ =

(
t′

r

)r
such that r ∈ (t′,∞), (5.140)

R :=

⌊
r

(
et

2
,

5

4
ε

)
/2

⌋
(5.141)

Jk(t) := the k’th Bessel function of the first kind (5.142)

Tk(t) := the k’th Chebyshev polynomial of the first kind (5.143)

pcos,t(x) := J0(t) + 2

R∑
k=1

(−1)kJ2k(t)T2k(x) (5.144)

Then pcos,t(x) is an even polynomial of degree 2R such that for all x ∈ [−1, 1]:

|cos(tx)− pcos,t(x)| ≤ ε. (5.145)

Furthermore:

r(t′, ε′) ∈ Θ

(
t′ +

log ε′−1

log(log(ε′−1))

)
(5.146)

Proof. These results are shown in Lemma 57 and Lemma 59 of [GSLW18], outlined in their

section 5.1.

Again, computation of the degree of the Jacobi-Anger expansion is a bit compli-

cated, but the complexity is worth it due to the method’s high performance. Our approach

is to first synthesize cos
(
πλ

(k)
j

)
to obtain a signal that oscillates to indicate bitk(λj), and

then apply Aη→δ(x
2) to amplify the signal to 0 or 1, as shown in Figure 5.2.

Actually, one might observe that synthesizing cos
(
πλ

(k)
j

)
first is not necessary to

make polynomials that look like those in Figure 5.2. Instead one can take an approach similar
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to the one used for making rectangle functions in [LC17]: simply shift, scale and add several

amplifying polynomials Aη→δ(x) to make the desired shape. None of these operations affect

the degree, so this approach also yields the same asymptotic scaling O(2nα−1 log(δ−1)) as

phase estimation. We will see in Corollary 5.13 that the method using the Jacobi-Anger

expansion actually achieves the worse scaling of O(α−1 log(δ−1)(2n + log(α−1))).

The reason why we present the approach using the Jacobi-Anger expansion, despite

it having worse asymptotic scaling, is that in the regime of interest (n ≈ 10, α ≈ 2−10) we

numerically find that the Jacobi-Anger expansion actually performs better. There may be

a regime where it is better to remove the Jacobi-Anger expansion from the construction, in

which case the algorithm is easily adapted.

The rest of the construction of Theorem 5.12 strongly resembles coherent iterative

phase estimation, so much so that we can re-use parts of the proof of Theorem 5.9. One

further difference is that this estimator now has garbage, because we have no guarantee that

the block encoding of the Hamiltonian only has one ancilla.

Theorem 5.12. Coherent Iterative Energy Estimation. Say the block encoding of H

requires a ancillae, that is, UH acts on C2a⊗H. Then there is an iterative energy estimator

with phases and a+ n+ 3 qubits of garbage with query complexity:

4 ·M(1−10−mcos )ηk→δamp
·
⌊
r

(
e

2
π2n−k,

5

4

ηk
2

10−mcos

)⌋
(5.147)

where Mη→δ and ηk are as in Corollary 3.23 and δamp can be chosen to be (1−10−msvt)δ2/8

for any msvt > 0, and we can choose any mcos > 0.

Proof. We construct the estimator as follows:
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1. Let Wk be a hermitian matrix on k qubits defined by:

Wk := 2

2k−1∑
∆k=0

∆k

2n
|∆k〉 〈∆k| (5.148)

Wk has a block encoding which can be constructed as follows: First, prepare |+n−1〉:

|∆k〉 → |∆k〉 |+n−1〉 =
1√

2n−1

2n−1−1∑
x=0

|∆k〉 |x〉 (5.149)

Next, observe that ∆k ≤ 2k−1 ≤ 2n−1−1. Into an ancilla register compute |x < ∆k〉,

and uncompute any garbage necessary to do so.

→ 1√
2n−1

2n−1−1∑
x=0

|∆k〉 |x〉 |x < ∆k〉 (5.150)

Then postselect that the final register is in the |1〉 state:

→ 1√
2n−1

|∆k〉
∆k−1∑
x=0

|x〉 (5.151)

Finally, postselect that the x register is in the |+n−1〉 state:

→ |∆k〉
∆k−1∑
x=0

1

2n−1
=

∆k

2n−1
|∆k〉 (5.152)

This process makes use of n − 1 ancillae initialized and postselected to |+〉, and one

more ancilla that is postselected to |1〉.

2. Use linear combinations of unitaries to construct a block encoding of:

H(k) :=
1

2
· I ⊗H − 1

4
·Wk ⊗ I +

1

4
· (4φk2k−n) · I ⊗ I (5.153)

where the φk are selected just as in as in Theorem 5.9. Observe that φk < 1/2,

so therefore 4φk2k−n is a probability which can be block-encoded. Since the block

encoding of H has a ancillae, and that of Wk has n ancillae, and the three terms in

the linear combination need two control qubits, the block encoding of H(k) has a+n+2

ancillae.
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3. Use Lemma 5.11 to construct a polynomial approximation pcos,π2n−k(x) of cos(π2n−kx)

to accuracy 2δcos, to be picked later.

Use Corollary 3.23 to construct a polynomial A(η−δcos)→δamp
. We will pick δamp later

and select ηk just as in Theorem 5.9.

Finally, use Theorem 3.17 to construct Usvt, a block encoding of p̃(H(k)) which ap-

proximates the even polynomial:

p̃(x) ≈ A(ηk−δcos)→δamp

(
p2

cos,π2n−k (x)
)

(5.154)

To perform singular value transformation we needed one extra ancilla, so Usvt has

a+ n+ 3 ancillae - these are the garbage output of this map.

4. Use the modified Toffoli gate I ⊗ |0〉 〈0| + X ⊗ (I − |0〉 〈0|) to conditionally flip the

output qubit.

We rewrite H(k) in terms of its eigendecomposition:

H(k) =
∑
j

∑
∆k

[
λj
2
− 1

2

∆k

2n
+ 2k−nφk

]
|∆k〉 〈∆k| ⊗ |ψj〉 〈ψj | (5.155)

=
∑
j

∑
∆k

2k−nλ
(k)
j |∆k〉 〈∆k| ⊗ |ψj〉 〈ψj | (5.156)

where we defined λ
(k)
j := 2n−k−1

(
λj − ∆k

2n

)
+ φk just like in Theorem 5.9. This protocol

implements a map:

|0〉 |0...0〉 |∆k〉 |ψj〉 →
(
p̃
(
2k−nλkj

)
|0〉 |gar0,j〉+ γ(λkj |1〉 |gar1,j〉

)
|∆k〉 |ψj〉 (5.157)

Here γ(λ
(k)
j ) is defined such that all the other amplitudes for the failed branches of the block

encoding are absorbed into the normalized state |gar1,j〉.
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We see that p̃
(
2k−nλkj

)
approximates

p̃(λ∆/2) ≈ A(ηk−δcos)→δamp

(
cos2

(
πλ

(k)
j

))
(5.158)

which is the same expression encountered in Theorem 5.9, with the same definition of λ
(k)
j ,

up to a minor shift on ηk. Therefore, we can follow the same reasoning as in Theorem 5.9

up to two minor differences, and arrive at the exact same conclusion. Namely, if we select

some msvt > 0 and then let:

δamp := (1− 10−msvt)
δ2

8
, δsvt := 10−msvt

δ2

8
, (5.159)

Then the unitary channel we implement is at most δ-far in diamond norm to a channel that

implements the map:

|0〉 |0...0〉 |∆k〉 |ψj〉 → eiϕj |bitk(λj)〉 |garλj 〉 |∆k〉 |ψj〉 (5.160)

whenever ∆k encodes the last k bits of λj .

Since the argument in Theorem 5.9 is lengthy and the modifications are extremely

minor, we will not repeat the argument here. Instead we will articulate the two things that

change.

First, Theorem 5.9 gives an estimator with phases and no garbage, whereas here

we also have garbage. The garbage just tags along for the entire calculation, and when we

come to selecting ϕj depending on λj we can also select |garλj 〉 = |gar0/1,j〉 depending on

bitk(λj).

Second, we incur an error of δcos in the approximation of cos(π2n−kx) with pcos,π2n−k(x).

Since we show that cos2(π2n−kx) is bounded away from 1
2 by ±η we therefore have that

pcos,π2n−k(x)2 is bounded away from 1
2 by ±

(
η − 2δcos

2

)
. The amplifying polynomial then
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proceeds to amplify (η − δcos)→ δamp appropriately, so the calculation proceeds the same.

We just need to ensure that η − δcos > 0, so we select

δcos := 10−mcos · η (5.161)

for some mcos > 0. This completes the accuracy analysis.

Finally, we analyze the query complexity. The block encoding of H(k) makes one

query to UH , so by Theorem 3.17 the query complexity is exactly the degree of p̃(x) which

is the degree of A(η−δcos)→δamp

(
p2

cos,π2n−k(x)
)

. From Lemma 5.11 and Corollary 3.23, the

degree is:

M(η−δcos)→δamp
· 2 · 2

⌊
r

(
e

2
π2n−k,

5

4

δcos

2

)⌋
(5.162)

Substituting the definitions for η, δamp and δcos yields the final runtime. As with Theo-

rem 5.9, δamp can be made larger by increasing mamp. By increasing mcos we can de-

crease δcos, which decreases the degree of A(η−δcos)→δamp
(x) while increasing the degree of

pcos,π2n−k(x). The Jacobi-Anger expansion deals with error more efficiently than the ampli-

fying polynomial, so in practice mcos should be quite large.

As with phase estimation, we also pack the coherent iterative energy estimator

into a regular energy estimator using Lemma 5.7. This time, since the iterative estimator

produces garbage it makes sense to uncompute the garbage using Lemma 5.8.

Corollary 5.13. Improved Energy Estimation. The iterative energy estimator with

phases and garbage from Theorem 5.12 can be combined with Lemma 5.8 and Lemma 5.7 to

make an energy estimator without phases and without garbage with query complexity bounded
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by:

O
(
α−1 log(δ−1)

(
2n + log

(
α−1

)))
(5.163)

assuming that α is bounded away from 1 by a constant.

Furthermore, even when there is no rounding promise, there exists an algorithm that,

given an eigenstate |ψj〉 of the Hamiltonian λj, for any δ > 0 performs a transformation

δ-close in diamond norm to the map:

|ψj〉 〈ψj | →
(
p |floor(2nλj)〉 〈floor(2nλj)|+ (1− p) |λ′j〉 〈λ′j |

)
|ψj〉 〈ψj | (5.164)

where p is some probability and λ′j = floor(2nλj)− 1 mod 2n is an erroneous estimate. Just

as in Corollary 5.10, the performance is the same except that 0 < α < 1 can be any constant.

Proof. As with Corollary 5.10, we write ηk to make the k dependence explicit and demand

accuracy δamp,k = (1− 10−mamp)(δ2−k−1)2/8 for the k’th bit. From Lemma 5.11 we obtain

an asymptotic upper bound r(t, ε) ∈ O
(
t+ log(ε−1)

)
. Again, recall from Corollary 3.23 that

Mηk→δamp
∈ O

(
η−1
k log(δ−1

amp)
)
. The asymptotic query complexity of the iterative energy

estimator from Theorem 5.12 is then bounded by:

O
(

(ηk − δcos)
−1 log(δ−1

amp,k) · (2n−k + log(δcos,k))
)

(5.165)

≤O
(

(1− 10−mcos)−1η−1
k log((1− 10−mamp)−122(k+1)δ−28) · (2n−k + log(10mcosη−1

k ))
)

(5.166)

≤O
(
η−1
k log(2k+1δ−1) · (2n−k + log(η−1

k ))
)

(5.167)

Next we invoke Lemma 5.8 to remove the phases and the garbage, doubling the query

complexity. We do this before invoking Lemma 5.7, because Lemma 5.7 involves blowing up

the number of garbage registers by a factor of n. While we could also invoke Lemma 5.7 and
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then invoke Lemma 5.3 to obtain a map without garbage, this would involve many garbage

registers sitting around waiting to be uncomputed for a long time. If we invoke Lemma 5.8

first we get rid of the garbage immediately.

Finally, we invoke Lemma 5.7 to turn our iterative energy estimator without garbage

and phases into a regular energy estimator without garbage and phases. As in Corollary 5.10,

we observe that η0 = α/2 and for k > 0 we have ηk bounded from below by a constant.

Then, the total query complexity is:

O

(
η−1

0 log(20+1δ−1)
(
2n−0 + log

(
η−1

0

))
+

n−1∑
k=1

η−1
k log(2k+1δ−1)

(
2n−k + log

(
η−1
k

)))
(5.168)

≤O

(
α−1 log(δ−1)

(
2n + log

(
α−1

))
+

n−1∑
k=1

(k + log(δ−1))2n−k

)
(5.169)

≤O
(
α−1 log(δ−1)

(
2n + log

(
α−1

))
+ 2(2n − n− 1) + (2n − 2) log(δ−1)

)
(5.170)

≤O
(
α−1 log(δ−1)

(
2n + log

(
α−1

)))
(5.171)

Next, we show that it is possible to implement a map that, given an eigenstate

|φj〉, measures an estimate that is either floor(2nλj) or floor(2nλj) − 1 mod 2n with some

probability. Note that this is not the same algorithm as above. Just as with phase estima-

tion, it is only the first bit that actually needs the rounding promise, and all other bits are

guaranteed to be deterministic.

The first bit performs a map of the form:

|0n〉 |0...0〉 |ψj〉 →
(√

p |0〉 |gar0,j〉+
√

1− p |1〉 |gar1,j〉
)
|ψj〉 (5.172)

We immediately see that Lemma 5.8 cannot be used to perform uncomputation here, because

uncomputation only works when p = 1 or p = 0. Instead, we simply measure the output
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register containing |0〉 or |1〉 and discard the garbage. This would damage any superposition

over the |ψj〉, which is why this algorithm only works if the input is an eigenstate.

We then use iterative estimators for the remaining bits to compute the rest of the

estimate. This time their outputs will be deterministic, but there is no point in doing

uncomputation since the superposition has already collapsed. Instead, we do the same

thing as for the k = 0 estimator: compute the next bit and some garbage, and discard the

garbage. The final answer is either floor(2nλj) or floor(2nλj)− 1 for the same reason as in

Corollary 5.10.

5.3 Performance Comparison

Above, we have presented a modular framework for phase and energy estimation

using the key ingredients in Theorem 5.9 and Theorem 5.12 respectively. These results

already demonstrate several advantages over textbook phase estimation as presented in

Proposition 5.5.

First, they eliminate the QFT and do not require a sorting network to perform

median amplification. Instead, they rely on just a single tool: singular value transformation.

Second, they require far fewer ancillae. Our improved phase estimation algorithm

requires no ancillae at all, and is merely ‘with phases’ so arguably does not even need un-

computation for some applications. On the other hand, textbook phase estimation requires

O((n+ log(α−1)) log(δ−1)) ancillae in order to implement median amplification.

Given a block encoding of a Hamiltonian with a ancillae, then our energy estima-
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tion algorithm requires a + n + 3 ancillae. But in order to even compare Proposition 5.5

to Theorem 5.12 we need a method to perform energy estimation using textbook phase

estimation. This is achieved through Hamiltonian simulation.

Which method of Hamiltonian simulation is best depends on the particular physi-

cal system involved. Hamiltonian simulation using the Trotter approximation can perform

exceedingly well in many situations [SHC20]. However, in our analysis we must be ag-

nostic to the particular Hamiltonian in question, and furthermore need a unified method

for comparing the performance. Hamiltonian simulation via singular value transformation

[LC17, GSLW18], lets us compare Proposition 5.5 and Theorem 5.12 on the same footing.

After all, this method features the best known asymptotic performance in terms of the

simulation time [Childs&19] in a black-box setting.

Singular value transformation constructs an approximate block encoding of eiHt

with ancillae. Since eiHt is unitary, in the ideal case the ancillae start in the |0〉 state

and are also guaranteed to be mapped back to the |0〉 state. But in the approximate case

the ancillae are still a little entangled with the remaining registers, so they become an

additional source of error. Certainly the ancillae cannot be re-used to perform singular

value transformation again, because then the errors pile up with each use. Thus, we are in

a similar situation to Lemma 5.3, where we must discard some qubits and take into account

the error.

Therefore, we must do some additional work beyond the Hamiltonian simulation

method presented in [GSLW18], to turn the approximate block encoding of a unitary into a

channel that approximates the unitary in diamond norm. The main trick for this proof is to

consider postselection of the ancilla qubits onto the |0〉 state. Then the error splits into two
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parts: the error of the channel when the postselection succeeds, and the probability that

the postselection fails.

The Hamiltonian simulation method is extremely accurate, letting us obtain block

encodings with an error that decays exponentially in the query complexity to UH . Thus, the

error contribution of this channel is almost entirely negligible in the performance analysis.

The purpose of the argument below is really to provide a Lemma analogous to Lemma 5.4

that lets us convert error bounds in spectral norms on block encodings to diamond norms.

That way, our entire error analysis is completely formal, as it should be for a fair comparison

of all algorithms involved. Notably, an ε-accurate block encoding of a unitary is not the

same thing as an ε-accurate implementation of that unitary: the latter implies a channel

with diamond norm error 2ε while the prior yields an error 4ε due to the ancilla registers.

Lemma 5.14. Hamiltonian simulation. Say UH is a block encoding of a Hamiltonian

H. Then, for any t > 0 and ε > 0 there exists a quantum channel that is ε-close in diamond

norm to the channel induced by the unitary eiHt. This channel can be implemented using

3 · r
(
et

2
,
ε

24

)
+ 3 (5.173)

queries to controlled-UH or controlled-U†H .

Proof. This is an extension of Theorem 58 of [GSLW18], which states that there exists a

block encoding UA of a matrix A such that |A− eiHt| ≤ ε with query complexity 3r
(
et
2 ,

ε
6

)
.

This result leverages the Jacobi-Anger expansion (Lemma 5.11) to construct approximate

block encodings of sin(tH) and cos(tH) and uses linear combinations of unitaries to approx-

imate eiHt/2. Then it uses oblivious amplitude amplification to get rid of the factor of 1/2,

obtaining UA. If UH is a block encoding with a ancillae, then UA has a+ 2 ancillae.
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All that is left to do is to turn this block encoding into a quantum channel that

approximately implements eiHt. To do so, we just initialize the ancillae to |0a+2〉, apply

UA, and trace out the ancillae. We can write this channel Λ as:

Λ(ρ) :=
∑
i

(〈i| ⊗ I)UA(|0a+2〉 〈0a+2| ⊗ ρ)U†A(|i〉 ⊗ I) (5.174)

To finish the theorem we must select an ε so that the error in diamond norm of Λ to the

channel implemented by eiHt is bounded by δ. To do so, we write Λ as a sum of postselective

channels Λi(ρ):

Λi(ρ) := (〈i| ⊗ I)UA(|0〉 〈0| ⊗ ρ)U†A(|i〉 ⊗ I) (5.175)

That way Λ =
∑
i Λi. If we let ΓeiHt := eiHtρe−iHt, then we can bound the error in diamond

norm using the triangle inequality:

|Λ− ΓeiHt |� ≤ |Λ0 − ΓeiHt |� +

∣∣∣∣∣∑
i>0

Λi

∣∣∣∣∣
�

(5.176)

Now we proceed to bound the two terms individually. Observe that:

Λ0(ρ) := (〈0| ⊗ I)UA(|0〉 〈0| ⊗ ρ)U†A(|0〉 ⊗ I) = AρA† (5.177)

Since |A− eiHt| ≤ ε, we can invoke Lemma 5.4 and see that |Λ0 − ΓeiHt |� ≤ 2ε, and we are

done with the first term.

To bound
∣∣∑

i>0 Λi
∣∣
�, we first observe that

∑
i>0 Λi = Λ−Λ0. Second, we observe

that the Λi are all positive semi-definite, so |Λi(ρ)|1 = Tr(Λi(ρ)). Plugging in the definition
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of the diamond norm, we can compute:∣∣∣∣∣∑
i>0

Λi

∣∣∣∣∣
�

= sup
ρ

∣∣∣∣∣∑
i

(Λi ⊗ I)(ρ)

∣∣∣∣∣
1

(5.178)

≤ sup
ρ

Tr

(∑
i

(Λi ⊗ I)(ρ)

)
(5.179)

= sup
ρ

Tr ((Λ⊗ I)(ρ)− (Λ0 ⊗ I)(ρ)) (5.180)

= 1− inf
ρ

Tr(AρA†) (5.181)

If we let E := eiHt −A so that |E| ≤ ε, and plug into the above expression, we get:

Tr(AρA†) = Tr(eiHtρe−iHt − Eρe−iHt − eiHtρE† + EρE†) ≥ 1− 2ε+ ε2 (5.182)

Putting everything together we obtain |Λ− ΓeiHt |� ≤ 2ε + 2ε − ε2 ≤ 4ε. So if we select

ε := δ/4 we obtain the desired bound.

The above proof uses the trick for the proof of the block-measurement theorem that

we mentioned in the introduction. We will need it again in the proof Theorem 5.16. Thus,

while we are at it, we may as well state the generalization of this result to any block-encoded

unitary as a proposition.

Proposition 5.15. Say UA is a block encoding of A, which is ε-close in spectral norm to a

unitary V . Then there exists a quantum channel 4ε-close in diamond norm to the channel

ρ→ V ρV †.

Proof. Lemma 5.14 proved this result with V = eiHt. The exact same argument holds for

abstract V .
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Returning to the ancilla discussion, say that the block encoding of the input Hamil-

tonian has a ancillae. Then we see that Theorem 5.12 requires a+n+3 ancillae, while text-

book phase estimation combined with Lemma 5.14 requires O(a+ (n+ log(α−1)) log(δ−1)).

This is because the extra ancillae required to perform the procedure in Lemma 5.14 can be

discarded and reset after each application of eiHt. Also note that despite the fact that the

above implementation of eiHt is not unitary, the overall protocol in Proposition 5.5 is still

approximately invertible as required by Lemma 5.3, since we can just use Lemma 5.14 to

implement e−iHt instead.

Next, we compare the algorithms in terms of their query complexity to the unitary

U or the block encoding UH . Note that this is not the gate complexity: the number of gates

from some universal gate set used to implement the algorithm. The reason for this choice is

that the gate complexity of U or UH depends on the application, and is likely much much

larger than any of the additional gates used to implement singular value transformation. The

algorithms’ query complexities depend on three parameters: α, n, and δ. In the following

we discuss the impact of these parameters on the complexity and show how we arrive at the

14x and 20x speedups stated in the introduction.

The performance in terms of α is plotted in Figure 5.5, for fixed n = 10 and

δ = 10−30. This comparison shows several features. First, we see that the novel algorithms

in this chapter are consistently faster than the traditional methods in this regime. The

only exception is Corollary 5.10 combined with Lemma 5.3 to remove the phases, which is

outperformed by traditional phase estimation for some value of α > 1/2. Such enormous

α is obviously impractical: even traditional phase estimation does not round to the nearest

bit in this regime.
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Second, the performance of Proposition 5.5 exhibits a ziz-zag behavior. This is

because we reduce α by estimating more bits than we need and then rounding them away,

a process that can only obtain α of the form 2−1−r for integer r. When α > 1
2 then we no

longer use the rounding strategy since we can achieve these values with median amplification

alone. Therefore, for large enough α the line is no longer a zig-zag and begins to be a curve

with shape ∼ α−2.

The zig-zag behavior makes comparison for continuous values of α complicated. In

our analysis we would like to compare against the most efficient version of traditional phase

estimation, so we continue our performance analysis where α is a power of two, maximizing

the efficiency (but minimizing our speedup). In Figure 5.6 we show the performance when

vary α, n and δ independently.

We see that once n & 10, α . 2−10 and δ . 10−30 the speedup stabilizes at about

14x for phase estimation and 20x for energy estimation. Our method therefore shows an

significant improvement over the state of the art.

Of course, several assumptions needed to be made in order to claim a particular

multiplicative speedup. Many of these assumptions were made specifically to maximize the

performance of the traditional method. For example, we count performance in terms of

query complexity rather than gate complexity, which neglects all the additional processing

that phase estimation needs to perform for median amplification. This method of compar-

ison favors the traditional method, since it neglects the fact that our new methods require

significantly less ancillary processing. Furthermore, we select α to be a power of two, so that

phase estimation is maximally efficient. However, we also assume that n is large enough

and that α and δ are small enough that the speedup is stable. If the accuracy required is

162



not so large, then the speedup is less significant.

Which method is best in reality will depend on the situation. In particular, the

appropriate choice of α when studying real-world Hamiltonians remains an interesting di-

rection of study. In reality it will not be possible to guarantee a rounding promise, so one’s

only option is to pick a small value of α and hope for the best. How small of an α is required?
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Figure 5.1: Sketch of γ(λ
(x)
j ), a lower bound on the magnitude of the amplitude of phase

estimation |β(λ
(x)
j )|2. Recall that the rounding promise guarantees that λj 6∈

[
x
2n ,

x
2n + α

2n

]
for all x, implying that λ

(x)
j 6∈ [ 1−α

2 , 1+α
2 ] as indicated in the shaded region. From this

sketch we draw two conclusions necessary for our proof. First, when α > 1/2 then γ(λ
(x)
j )

is guaranteed to be strictly greater than 1/2, so η > 0 (in fact, η > η0). Second, even when
no rounding promise applies, the sum of the probabilities of two adjacent bins is at least
8/π2, which we use to define the amplification threshold η0. Also visible in this figure is

the impossibility of reducing α further than ≈ 10% without rounding: several values of λ
(x)
j

near 1/2 have probabilities less than 1/2 and cannot be amplified.
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0 1 0 1

0 1

cos2( (2n k 1
j + k))

A k (cos2( (2n k 1
j + k)))

Polynomials for Coherent Iterative Estimation (n= 4)

Figure 5.2: Sketch of the polynomials used in Theorems 5.9 and 5.12. In black we show a
shifted cos2(x) function that indicates if the bit is 0 or 1. Then, the amplifying polynomial
from Corollary 3.23 is applied to it to yield the dashed line, which is either ≤ δ or ≥
1 − δ depending on the bit. For the k = 0 bit, the gaps between the allowed intervals are
guaranteed by the rounding promise. But as more bits are estimated and subtracted off,
the gaps for k ≥ 1 require no rounding promise, and also become larger and larger so less
and less amplification is needed.
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(
(

Figure 5.3: Sketch of the probability cos2
(
πλ

(k)
j

)
which appears in the proof of Theo-

rem 5.9.
We are guaranteed that λ

(k)
j can only appear in the un-shaded regions: for k = 0 the round-

ing promise rules out the shaded regions, and for k ≥ 1 we have subtracted ∆k/2
n off of λj ,

preventing regions where previous bits are 1 .

We can see how the probability cos2
(
πλ

(k)
j

)
is close to 1 if bitk(λj) = 0 and close to 0 if

bitk(λj) = 1. To make this claim precise, we simply fit a line with slope 2 to the points
where the probability intersects 1/2, and see that this line alternatingly gives upper or lower
bounds on the probability. So if ηk/2 is equal to half the distance between allowed intervals,

then the probability is either ≥ 1/2+ηk or ≤ 1/2−ηk in the regions where λ
(k)
j can appear.

The relationship of this figure to Figure 5.2 is fairly simple: the probability as a function
of λj can be obtained by just tiling the ‘unit cell’ shown in this figure 2n−k−1 times. This

also makes the ratio 2n−k−1 between λj and λ
(k)
j intuitive.
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. . .

...

(a) (b)

(c)

(d)

Figure 5.4: Circuit diagram for the algorithm in Corollary 5.10. (a) and (b) are de-
pictions of (5.98) and (5.103) respectively. (c) depicts the singular value transformation

circuit obtained from Theorem 3.17 which interperses alternating applications of U
(k)
signal and

U
(k)†
signal with phase rotations eiθjZ , where the angles θj encode the polynomial approximat-

ing Aη→δamp(x2). (d) depicts the final circuit assembled via Lemma 5.7, showing how each
iterative estimator’s output becomes part of the |∆k〉 register for the next, and how that
register finally becomes the output.
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α

Figure 5.5: Performance of estimation algorithms presented in this chapter. Phase estima-
tion algorithms are presented with slim lines on the left, and energy estimation algorithms
are presented with thick lines on the right. The zig-zag behavior of phase estimation is
explained by the method by which Proposition 5.5 reduces α: by estimating more bits than
needed and then rounding them. Thus, the α achieved by phase estimation is always a
power of two.
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Figure 5.6: Speedup over traditional methods by our new methods for phase and energy
estimation. When n & 10, δ . 10−30 and α . 2−10 the speedups become stable. Together
with Figure 5.5 we can conclude that the speedup for phase estimation is about 14x and
the speedup for energy estimation is about 20x.
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5.4 Block-Measurement

We have presented improved algorithms for phase and energy estimation. In this

section we prove the block-measurement theorem from the introduction. The goal of the

block-measurement protocol is the following: given an approximate block encoding of a

projector Π, implement a channel close to the unitary:

|1〉 ⊗Π + |0〉 ⊗ (I −Π) (5.183)

When the block encoding of Π is exact, then the above is easily accomplished

through linear combinations of unitaries and oblivious amplitude amplification. In particu-

lar, we can rewrite the above as |0〉 ⊗ I −
√

2 |−〉 ⊗Π, so we need to amplify away a factor

of 1/(1 +
√

2) from the linear combination. Following Theorem 28 of [GSLW18], we observe

that T5(x) is the first Chebyshev polynomial that has a solution T5(x) = ±1 such that

x < 1/(1 +
√

2). We nudge the factor down to the solution x with some extra postselec-

tion, and then we meet the conditions of this theorem. This demands five queries to the

block encoding of Π. Then we invoke our Proposition 5.15 to turn the block encoding of

|1〉 ⊗Π + |0〉 ⊗ (I −Π) into a channel.

However, the above strategy is both more complicated and more expensive than

necessary - we can do this in just two queries. Say UΠ is a block encoding of Π with m

ancillae. Then, let VΠ:

VΠ :=
UΠ

•
U†Π

(5.184)
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where the CNOT above refers to X ⊗ |0m〉 〈0m|+ I ⊗ (I − |0m〉 〈0m|). Then, VΠ satisfies:

(I ⊗ 〈0m| ⊗ I)VΠ(|0〉 ⊗ |0m〉 ⊗ I) (5.185)

= |1〉 ⊗Π + |0〉 ⊗ (I −Π) (5.186)

So viewing the |0m〉 register as the postselective part of a block encoding, we see that VΠ is

a block encoding of the desired operation. Then we invoke Proposition 5.15 to construct a

channel ΛΠ from VΠ. Now all that is left to do is the error analysis.

In fact, when m = 1, then there is an extent that we do not even need the modified

CNOT gate and can get away with just a single query. We used this fact in Theorem 5.9.

This is because if Π =
∑
j αj |ψj〉 〈ψj |, then we can write:

UΠ(|0〉 ⊗ I) =
∑
j

(αj |0〉+ βj |1〉) |ψj〉 〈ψj | (5.187)

where βj is some amplitude satisfying |βj |2 + |αj |2 = 1. To compare, the desired operation

is:

∑
j

(αj |1〉+ (1− αj) |0〉) |ψj〉 〈ψj | (5.188)

Since αj ∈ {0, 1}, we know that βj = eiφj (1 − αj) for some phase φj that may depend on

|ψj〉. So, with the exception of the phase correction, we are already one X gate away from

the desired unitary.

Is it possible to remove this phase correction without uncomputation? If UΠ is

obtained through singular value transformation of some real eigenvalues λj then we actually

have more control than Theorem 3.17 would indicate. Looking at Theorem 3 of [GSLW18],

we can actually select polynomials P,Q such that αj = P (λj) and βj = Q(λj), provided that
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P,Q satisfy some conditions including |P (x)|2 +(1−x2)|Q(x)|2 = 1. For what positive-real-

valued polynomials P (x) is it possible to choose a positive-real-valued Q(x) that satisfies

this relation, thus removing the phases eiφj? We leave this question for future work.

Now we proceed to the formal statement and error analysis of the block-measurement

theorem.

Theorem 5.16. Block-measurement. Say Π is a projector, and A is a hermitian matrix

satisfying |Π−A2| ≤ ε. Also, A has a block encoding UA. Then the channel ΛA, constructed

in the same way as ΛΠ above just with UA instead of UΠ, approximates ΛΠ in diamond norm:

|ΛA − ΛΠ|� ≤ 4
√

2ε (5.189)

Proof. Just like VΠ, VA is a block encoding of the unitary:

X ⊗A2 + I ⊗ (I −A2) (5.190)

The distance in spectral norm to VΠ = X ⊗Π + I ⊗ (I −Π) is:

∣∣∣ |1〉 ⊗Π + |0〉 ⊗ (I −Π)− |1〉 ⊗A2 − |0〉 ⊗ (I −A2)
∣∣∣ (5.191)

=
∣∣∣ |1〉 ⊗ (Π−A2) + |0〉 ⊗ (A2 −Π)

∣∣∣ (5.192)

=
√

2

∣∣∣∣ |0〉 − |1〉√
2
⊗ (Π−A2)

∣∣∣∣ (5.193)

=
√

2
∣∣Π−A2

∣∣ ≤ √2ε (5.194)

So we have a block encoding of a matrix
√

2ε-close in spectral norm to the unitary X ⊗

Π + I ⊗ (I − Π). Now we just use Proposition 5.15, which gives a channel with diamond

norm accuracy 4
√

2ε. Then we get the desired operation by initializing an extra qubit to

|0〉 before applying the channel.
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What happens when A is not a projector? For simplicity, say the input state to the

circuit is |Ψ〉, which happens to be an eigenstate of A. Then:

VA (|0〉 ⊗ |0m〉 ⊗ |Ψ〉) = (|1〉 ⊗ U†A |0
m〉 〈0m|UA |0m〉+ |0〉 ⊗ U†A (I − |0m〉 〈0m|)UA |0m〉)⊗ |Ψ〉

(5.195)

= (−
√

2 |−〉 ⊗ U†A |0
m〉 〈0m|UA |0m〉+ |0〉 ⊗ U†AUA |0

m〉)⊗ |Ψ〉
(5.196)

We are interested in the state obtained by tracing out the |0m〉 register above. For

j ∈ {0, 1}m, we let γj abbreviate a matrix element of UA:

γj |Ψ〉 := (〈0m| ⊗ I)UA (|j〉 ⊗ |Ψ〉) (5.197)

(I ⊗ 〈j| ⊗ I)VA (|0〉 ⊗ |0m〉 ⊗ |Ψ〉) =
(
−γ†jγ0

√
2 |−〉+ δj,0 |0〉

)
⊗ |Ψ〉 (5.198)

Note that γ0 is the eigenvalue of A corresponding to |Ψ〉. Then, the reduced density matrix

after tracing out the middle register is:

∑
j∈{0,1}m

(
−γ†jγ0

√
2 |−〉+ δj,0 |0〉

)(
−γjγ†0

√
2 〈−|+ δj,0 〈0|

)
⊗ |Ψ〉 〈Ψ| (5.199)

=
∑

j∈{0,1}m

(
2|γj |2|γ0|2 |−〉 〈−| −

√
2δj,0γjγ

†
0 |0〉 〈−| −

√
2δj,0γ

†
jγ0 |−〉 〈0|+ δj,0 |0〉 〈0|

)
⊗ |Ψ〉 〈Ψ|

(5.200)

=
(

2|γ0|2 |−〉 〈−| −
√

2|γ0|2 |0〉 〈−| −
√

2|γ0|2 |−〉 〈0|+ |0〉 〈0|
)
⊗ |Ψ〉 〈Ψ| (5.201)

=
(
|γ0|2 |1〉 〈1|+ (1− |γ0|2) |0〉 〈0|

)
⊗ |Ψ〉 〈Ψ| (5.202)

This somewhat complicated calculation produced a simple result: tracing out the |0m〉

register collapses the superposition on the output register. A more general version of this

calculation where the input state is not an eigenstate of A demonstrates that this collapse

also damages the superposition on the input register (although it does not fully collapse it).

Intuitively, we can see why this is the case even without doing the full calculation: since
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measuring the middle register collapses the superposition that encodes the eigenvalues,

the environment that traced out the middle register thus learns information about the

eigenvalues. But the distribution over eigenvalues also contains information about the input

superposition over eigenvectors, so therefore the input state will be damaged.

In essence, we have re-derived the fact that uncomputation is impossible unless the

output of the computation is deterministic.

5.5 Non-Destructive Amplitude Estimation

In this section we show how to use our energy estimation algorithm to perform

amplitude estimation. The algorithms for energy and phase estimation demanded a rounding

promise on the input Hamiltonian, which guarantees that they do not damage the input

state even if it is not an eigenstate of the unitary or Hamiltonian of interest. However, as we

shall see, this is not a concern for amplitude estimation. This is because we can construct

a Hamiltonian whose eigenstate is the input state.

Say Π is some projector and |Ψ〉 is a quantum state. Non-destructive amplitude

estimation obtains an estimate of a = |Π |Ψ〉 | given exactly one copy of |Ψ〉, and leaves

that copy of |Ψ〉 intact. This subroutine is explicitly required by the algorithms in [HW19,

AHNTW20], which can be used to perform Bayesian inference, thermal state preparation

and partition function estimation. However, it is also quite useful in general when |Ψ〉 is

expensive to prepare. For example, when estimating the expectation of an observable on

the ground state of a Hamiltonian, preparing the ground state can be very expensive. Thus,

it may be practical to only prepare it once.

The only previously known algorithm for non-destructive amplitude estimation is
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given in [HW19]. It works via several invocations of amplitude estimation according to

[BHMT00], which is based on phase estimation. We argue that our new algorithm has

several performance advantages over the prior art. However, these advantages are not

very quantifiable, preventing us from computing a numerical constant-factor speedup. The

advantages are as follows:

• Our new algorithm requires dramatically fewer ancillae. This is because [HW19] relies

on phase estimation with median amplification. As argued above, median amplifica-

tion requires O(n log(δ−1)) ancillae. In contrast, we simply use the protocol for energy

estimation which requires n+O(1) ancillae.

• Our new algorithm runs in a fixed amount of time: one application of our energy

estimation algorithm suffices. In contrast, [HW19]’s algorithm works by repeatedly

attempting to ‘repair’ the input state. This process succeeds only with probability

1/2, so while the expected number of attempts is constant, the resulting algorithm is

highly adaptive and may need a variable amount of time.

• Our new algorithm does not require knowledge of a lower bound on the amplitude

a. The ‘repair’ step in [HW19] itself involves another application of phase estimation,

which must produce an estimate with enough accuracy to distinguish arcsin(a) and

− arcsin(a). This also implies that [HW19] can only produce relative-error estimates,

even when an additive-error estimate might be sufficient, as it is in [AHNTW20].

• While, due to the above differences, it is not really possible to perform a side-by-

side constant-factor comparison of the algorithms, we do expect to inherit a modest

constant-factor speedup from our energy estimation algorithm. [BHMT00] has no need

175



to perform Hamiltonian simulation, so we expect the speedup to look more like the

one in the case of phase estimation. Since no rounding promise is required, making

α tiny is not really necessary. But it is necessary that α < 1/2 since this makes

traditional phase estimation round correctly. Looking at Figure 5.5, we already see

constant factor speedups in this regime.

Another minor advantage of our method over [HW19] is that it estimates a2 directly,

rather than going through the Grover angle θ := arcsin(a). Coherently evaluating a sine

function in superposition to correct this issue, while possible, will have an enormous ancilla

overhead. a2 is the probability with which a measurement of |Ψ〉 yields a state in Π, which

may be useful directly.

We note that an additive error estimate of a is slightly stronger than an additive

error estimate of a2. Moreover this accuracy seems to be necessary for some versions of

quantum mean estimation: see for example Appendix C of [AHNTW20]. If the amplitude a

is desired rather than a2, then, since the algorithm proceeds by obtaining a block encoding

of a2, one can use singular value transformation to make a block encoding of a instead. A

polynomial approximation of
√
x could be constructed from Corollary 66 of [GSLW18]. We

leave a careful error analysis of a direct estimate of a to future work.

Corollary 5.17. Non-destructive amplitude estimation. Say Π is a projector and RΠ

is a unitary that reflects about this projector:

RΠ := 2Π− I (5.203)

Let |Ψ〉 be some quantum state such that a := |Π |Ψ〉 |. Let M := floor(a22n). Then for

any positive integer n and any δ > 0 there exists a quantum channel that implements δ-
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approximately in diamond norm the map:

|0n〉 〈0n| ⊗ |Ψ〉 〈Ψ| → (p |M〉 〈M |+ (1− p) |M − 1 mod 2n〉 〈M − 1 mod 2n|)⊗ |Ψ〉 〈Ψ|
(5.204)

for some probability p (i.e., there is some probability that instead of obtaining floor(a22n)

we obtain floor(a22n)−1 ). This channel uses O
(
2n log(δ−1)

)
controlled applications of RΠ

and R|Ψ〉 := 2 |Ψ〉 〈Ψ| − I.

Proof. We use linear combinations of unitaries to make block encodings of Π and |Ψ〉 〈Ψ|.

Π =
I +RΠ

2
, |Ψ〉 〈Ψ| =

I +R|Ψ〉

2
(5.205)

Then, we multiply these projectors together to make a block encoding of A:

A := |Ψ〉 〈Ψ| ·Π · |Ψ〉 〈Ψ| = a2 |Ψ〉 〈Ψ| (5.206)

Now we simply invoke the algorithm described in Corollary 5.13 for the case when no

rounding promise is present, and apply it to the input state |Ψ〉. Since |Ψ〉 is an eigenstate

of A, we are guaranteed to measure either floor(a22n−1) or floor(a22n−1)− 1 mod 2n.

Observe that the random error only occurs for particular values of a2, which is where

the rounding promise is violated. We can ignore the rounding promise precisely because the

input state |Ψ〉 is an eigenstate of the Hamiltonian: an incorrect estimate does not damage

the input state.
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Chapter 6

Estimating Near-Clifford Quantum Circuits

The work presented in this chapter is based on [RLCK19], which was the result of

a collaboration between students in the Aaronson group. Patrick Rall designed and analyzed

the algorithms, wrote the text, and contributed theorems and figures throughout. Daniel

Liang and William Kretschmer proved many of the theorems in Section 6.2 and prepared

some of the figures. Jeremy Cook performed the numerical simulations in Section 6.3.

Simulating quantum circuits on classical hardware requires large computational

resources. Near-Clifford simulation techniques extend the Gottesmann-Knill theorem to ar-

bitrary quantum circuits while maintaining polynomial time simulation of stabilizer circuits.

Their runtime analysis gives rise to measures of non-Cliffordness, such as the robustness of

magic [HC16], magic capacity [SC19], sum-negativity [VMGE13]. These algorithms evalu-

ate circuits by estimating the mean of some probability distribution via the average of many

samples, a process with favorable memory requirements and high parallelizability.

Previous work [Bennink&17, HC16] gives an algorithm based on quasiprobability

distributions over stabilizer states; we refer to this algorithm as ‘stabilizer propagation’. In

contrast to techniques based on stabilizer rank [BG16, Bravyi&18], stabilizer propagation

is appealing for simulation of NISQ-era hardware [Preskill18] because it can simu:late noisy

channels. Moreover, depolarizing noise decreases the number of samples required, measured

by robustness of magic and the magic capacity. However, bounding the number of required
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samples can be expensive: For example, the magic capacity of a 3-qubit channel is defined

as a convex optimization problem over 315,057,600 variables [HG18, SC19].

Pashayan et al. [PWB15] showed that in qutrit systems, the discrete Wigner func-

tion provides a simpler simulation strategy. This strategy takes linear time to sample, and

the number of samples required (measured by the sum-negativity) is tractable to compute

for small systems. However, discrete Wigner functions do not yield efficient simulation of

qubit Clifford circuits [Raussendorf&15].

Our main result is that Bloch vectors yield simulation strategies for qubit circuits,

similar to those in Pashayan et al. We present two algorithms, which we individually call

Schrödinger propagation and Heisenberg propagation, and collectively call Pauli

propagation techniques. They have several surprising properties:

1. They yield linear time simulation for qubit Clifford circuits without writing down

stabilizer states.

2. Schrödinger propagation can efficiently simulate a new family of quantum states called

‘hyper-octahedral states’ which is significantly larger than the set of stabilizer mixtures

in terms of the Hilbert-Schmidt measure.

3. The runtime of Heisenberg propagation does not depend on the input state at all.

4. Non-Cliffordness in both algorithms is measured via the stabilizer norm, which is a

lower bound to the robustness of magic. This gives Pauli propagation techniques

a strictly lower runtime than stabilizer propagation for all input states and most

channels.
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We describe these algorithms in Section 6.1. In Section 6.2 we perform a detailed

comparison of Schrödinger, Heisenberg and stabilizer propagation which we summarize in

the table below. In Section 6.3 we present some numerical results. In Section 6.4 we briefly

discuss the implications of the algorithms for resource theories of Cliffordness. In the final

two sections we discuss some technical points we allude to throughout the text.

6.1 Algorithms

In this section we describe two algorithms for estimating the expectation value of

observables at the end of a quantum circuit. Schrödinger propagation involves propagating

states forward though the circuit and taking inner products with the final observables.

Heisenberg propagation involves propagating observables backward though the circuit and

taking inner products with the initial states. At every step, both procedures sample from

an unbiased estimator for the propagated state/observable that is distribution over Pauli

matrices.

6.1.1 Sampling Pauli Matrices

The workhorse of both protocols is a subroutine that samples a random scaled

tensor product of Pauli matrices as a proxy for an arbitrary n-qubit Hermitian matrix A.

Let Pn = {σ1 ⊗ · · · ⊗ σn : σi ∈ {I, σX , σY , σZ}} denote the set of n-qubit Pauli matrices.

We define a pair of completely dependent random variables σ̂ ∈ Pn and ĉ ∈ R that satisfy

E [ĉ · σ̂] = A:

σ̂(A) = σ with prob.
|Tr(σA)|
2n · D(A)

for each σ ∈ Pn, (6.1)

ĉ(A) = sign (Tr(σ̂(A)A)) · D(A). (6.2)
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The quantity D(A) is a normalization constant that makes |Tr(σA)|
2n·D(A) for σ ∈ Pn a

probability distribution.

Definition 6.1. The stabilizer norm D(A) is:

D(A) =
1

2n

∑
σ∈Pn

|Tr(σA)| . (6.3)

The product of the random variables ĉ(A) · σ̂(A) is an unbiased estimator for A

because the Pauli matrices form an operator basis for Hermitian matrices:

E[ĉ(A) · σ̂(A)] =
∑
σ∈Pn

|Tr(σA)|
2n · D(A)

· sign (Tr(σA)) · D(A) · σ

=
∑
σ∈Pn

Tr(σA)

2n
· σ = A. (6.4)

The time to compute the probabilities and sample from the distributions scales

exponentially with the number of qubits of A. We say A has tensor product structure if

it can be written as a tensor product of several operators, each of which acts on a constant

number of qubits:

A = A1 ⊗A2 ⊗ · · ·

Then one can observe that:

σ̂(A) = σ̂(A1)⊗ σ̂(A2) · · · and ĉ(A) = ĉ(A1) · ĉ(A2) · · ·

Since each Ai acts on a constant number of qubits, each of the probability distributions for

σ̂(Ai), ĉ(Ai) can be computed and sampled from in constant time. So σ̂(A) and ĉ(A) can

be sampled from in linear time if A has tensor product structure, even if A acts on many

qubits.
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6.1.2 Schrödinger Propagation

Suppose we want to apply a sequence of channels Λ1, . . . ,Λk to an n-qubit state ρ0.

These operations are given as a quantum circuit, so ρ0 has tensor product structure and

each of the Λi non-trivially act on a constant-size subset of the qubits. Let ρi be the state

after applying the first i channels:

ρi = Λi(Λi−1(· · ·Λ1(ρ0))) (6.5)

We are given an observable E which also has tensor product structure. We want to

estimate the expectation of E on the final state:

〈E〉 = Tr (Eρk) = Tr (EΛk(Λk−1(· · ·Λ1(ρ0)))) (6.6)

We apply the sampling procedure defined by (6.1) and (6.2) to ρ0. We define

σ̂(ρ0) = σ̂0 and ĉ(ρ0) = ĉ0. Their product ĉ0 · σ̂0 is an unbiased estimator for ρ0.

Given an unbiased estimator ĉi · σ̂i for ρi, we will obtain an unbiased estimator

ĉi+1 · σ̂i+1 for ρi+1. Apply Λi+1 to ĉi · σ̂i and use linearity of Λi+1:

E [Λi+1(ĉi · σ̂i)] = Λi+1(E [ĉi · σ̂i]) = ρi+1

We have Λi+1(ĉi · σ̂i) = ĉi ·Λi+1(σ̂i). Since Λi+1 acts non-trivially on a constant-size

subset of the qubits, Λi+1(σ̂i) has tensor product structure and we can sample using (6.1)

and (6.2) again. Let:

σ̂i+1 = σ̂ (Λi+1(σ̂i)) and ĉi+1 = ĉi · ĉ (Λi+1(σ̂i)) (6.7)

Now we have ĉi+1 · σ̂i+1, an estimator for ρi+1, and can recursively obtain ĉk · σ̂k

for ρk. Since E and σ̂k have tensor product structure, we can efficiently obtain their trace

182



inner product. The protocol yields a sample from the distribution in time linear in k + n:

Output: sample from ĉk · Tr(σ̂kE) (6.8)

This distribution estimates the target quantity:

E [ĉk · Tr(σ̂kE)] = Tr(E [ĉk · σ̂k]E) = Tr (ρkE) = 〈E〉

We estimate the mean of ĉk · Tr(σ̂kE) by taking the average of N samples. The

Hoeffding inequality [Hoeffding63] provides a sufficient condition on N for an additive error

ε with probability 1− δ in terms of the range of the distribution:

N ≥ 1

2ε2
· ln 2

δ
· (range)2 (6.9)

The range of the output distribution is bounded by twice the maximum magnitude of the

output distribution (6.8).

range ≤ 2 · |ĉk · Tr(σ̂kE)| ≤ 2 · |ĉk| · max
σ∈Pn

|Tr(σE)| (6.10)

Observe that ĉ(A) = ±D(A), so:

|ĉi+1| = |ĉi| · |ĉ (Λi+1(σ̂i)) |

= |ĉi| · D(Λi+1(σ̂i))

≤ |ĉi| · max
σ∈Pn

D(Λi(σ)) (6.11)

Intuitively, D measures the “cost” of a Hermitian matrix in this algorithm. The

above motivates a corresponding notion of the “cost” of a channel:

Definition 6.2. The channel stabilizer norm D(Λ) is defined by:

D(Λ) = max
σ∈Pn

D(Λ(σ)) (6.12)
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Expanding the recursion in (6.11) we obtain the bound:

|ĉk · Tr(σ̂kE)| ≤ D(ρ0)︸ ︷︷ ︸
(1)

·
k∏
i=1

D(Λi)︸ ︷︷ ︸
(2)

·
∣∣∣∣max
σ∈Pn

Tr(σE)

∣∣∣∣︸ ︷︷ ︸
(3)

(6.13)

The number of samples N scales with the square of the above quantity. Thus, the cost of

Schrödinger propagation on a circuit breaks into three parts: (1) the cost of the initial state,

(2) the cost of each channel, and (3) the cost of the final observable.

Here are two observations:

• Say ρ0 = ρ⊗m, so D(ρ0) = D(ρ)m. For many ρ with short Bloch vectors, the cost D(ρ)

can be strictly less than 1, meaning more copies of ρ result in an exponential runtime

improvement from cost term (1).

• Often we are interested in observables Elocal that act only on a small subset of the

output qubits. Then E is a tensor product of linearly many identity matrices and

Elocal, resulting in an exponential runtime blowup from cost term (3).

Loosely speaking, Schrödinger propagation works well when the input qubits are

noisy and all output qubits are measured, like some supremacy circuits [Martinis&16].

6.1.3 Heisenberg Propagation

Heisenberg propagation involves propagating the observable E backwards through

the circuit and taking the inner product with the initial state ρ0. To do so we utilize the

channel adjoint Λ† which satisfies:

Tr(EΛ(ρ)) = Tr(Λ†(E)ρ) (6.14)
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Applying this to (6.6), our goal is to estimate:

〈E〉 = Tr
(
ρ0Λ†1(· · ·Λ†k−1(Λ†k(E)))

)
= Tr (ρ0E1)

where Ei = Λ†i (Λ
†
i+1(· · ·Λ†k−1(Λ†k(E)))) (6.15)

For Heisenberg propagation we will define ĉi, σ̂i differently from Schrödinger prop-

agation. We use the sampling procedure defined by (6.1) and (6.2) and obtain σ̂(E) = σ̂k+1

and ĉ(E) = ĉk+1. Then ĉk+1 · σ̂k+1 is an unbiased estimator for E.

With an unbiased estimator ĉi+1 ·σ̂i+1 for Ei+1 we can obtain an unbiased estimator

ĉi·σ̂i for Ei from Λ†i (ĉi+1·σ̂i+1) = ĉi+1·Λ†i (σ̂i+1). Since Λ†i (σ̂i+1) has tensor product structure

we can sample using (6.1) and (6.2), and obtain:

σ̂i = σ̂(Λ†i (σ̂i+1)) and ĉi = ĉi+1 · ĉ(Λ†i (σ̂i+1)) (6.16)

This operation is iterated until we obtain ĉ1 · σ̂1, an unbiased estimator for E1.

Since ρ0 has tensor product structure we can compute the trace inner product and produce

a sample, again in time linear in k + n:

Output: sample from ĉ1 · Tr(σ̂1ρ0) (6.17)

This estimates the target quantity:

E [ĉ1 · Tr(σ̂1ρ0)] = Tr(E [ĉ1 · σ̂1] ρ0) = Tr (E1ρ0) = 〈E〉

To bound the number of samples N we bound the maximum magnitude of (6.17)

and utilize Hoeffding’s inequality (6.9). Since ρ0 is a quantum state, we always have

maxσ∈Pn |Tr(σρ0)| = 1 since the eigenvalues of σ are ±1. This leaves the recursion re-

lation:
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|ĉ1 · Tr(σ̂1ρ0)| ≤ |ĉ1| = |ĉi+1| ·
∣∣∣ĉ(Λ†i (σ̂i+1)

)∣∣∣
= |ĉi+1| · D(Λ†i (σ̂i+1))

≤ |ĉi+1| · max
σ∈Pn

D(Λ†i (σ))

= |ĉi+1| · D(Λ†i ) (6.18)

Expanding the recursion we obtain the bound:

|ĉ1 · Tr(σ̂1ρ0)| ≤ D(E)︸ ︷︷ ︸
(1)

·
k∏
i=1

D(Λ†i )︸ ︷︷ ︸
(2)

(6.19)

The number of samples N scales with the square of the cost of the observable (1)

and the cost of channel adjoints (2), and is independent of the initial state.

Loosely speaking, Heisenberg propagation is efficient for any separable input state or

stabilizer mixture and supports a wider range of observables than Schrödinger propagation.

However, it cannot capitalize on particularly noisy input states for a runtime improvement.

A version of Heisenberg propagation appears in [PBG17], where they restrict op-

erations to Clifford unitaries. Our work generalizes the technique to arbitrary quantum

channels.

6.2 Efficient Circuit Components

In this section we study which input states, channels and observables (collectively

‘circuit components’) can be simulated by Schrödinger, Heisenberg and stabilizer propa-

gation without increasing runtime. This viewpoint helps address the practical question:

“Given a particular quantum circuit, which near-Clifford algorithm is best?”
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Straightaway, if the quantum circuit is unitary then stabilizer rank techniques

[Bravyi&18] are the best choice due to their superior accuracy and runtime. The primary

advantage of propagation algorithms is their ability to support arbitrary circuit compo-

nents with noise, measurement, and adaptivity. Despite their flexibility, the propagation

algorithms vary significantly in their performance.

Since the number of samples scales as the product of the square of the cost of the

components, a component occurring linearly many times with cost > 1 demands exponential

runtime. In the following, when we say an algorithm supports or can handle a component,

we mean that the cost of the component is ≤ 1, although the protocols can be applied to

any component possibly inefficiently.

6.2.1 Efficiency of Stabilizer Propagation

For a self-contained description of stabilizer propagation see [Bennink&17, HC16,

SC19]. Just as the algorithms in section II decompose input states into a weighted sum

of Pauli matrices, stabilizer propagation decomposes input states into a weighted sum of

stabilizer states. A sampling process identical to equations (6.1) and (6.2) results in the

number of samples required to be proportional to the square of the following normalization

constant:

Definition 6.3. The robustness of magic R(ρ) of an n-qubit state ρ is the outcome of

a convex optimization program over real vectors ~q:

R(ρ) = min
~q

∑
i

|qi| s.t. ρ =
∑
i

qi |φi〉 〈φi| and
∑
i

qi = 1,

where {|φi〉} are the n-qubit stabilizer states.
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When R(ρ) = 1 (the minimum value) then ρ is a stabilizer mixture, since then

the vector ~q is a probability distribution.

Due to the sheer number of stabilizer states, evaluating R(ρ) for even small n is

very expensive. As stated in [Bennink&17], evaluating the cost function for 3-qubit unitaries

is impractical, although the performance can be improved for diagonal gates [SC19].

The performance of stabilizer propagation gives a lens for the non-Cliffordness of

channels, studied extensively in [SC19]. In section 6.6 we expand on this work by modify-

ing the protocol to support all postselective channels which include all trace preserving

channels and all ‘reasonable’ non-trace-preserving channels. There, we prove the following

theorem:

Theorem 6.4. Let Λ be a postselective channel and let φ̄Λ be the channel’s normalized Choi

state. Λ does not increase the number of samples required for stabilizer propagation if and

only if R(φ̄Λ) = 1.

This establishes simple and flexible criteria for when a circuit component does not

increase the runtime of stabilizer propagation: states ρ are cheap when R(ρ) = 1 and

channels Λ are cheap if R(φ̄Λ) = 1.

6.2.2 Observables

Observables encountered in practice are usually computational basis measurements,

or operators with bounded norm that can be expressed as sums of not too many Pauli

matrices. Sometimes these observables are marginal: many of the qubits are not measured
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and traced out. Tracing out corresponds to measuring the identity observable, a kind of

Pauli observable.

Stabilizer propagation outputs the inner product of the final observable with a

stabilizer state. For all of the observables above, calculating inner products with stabilizer

states is efficient: inner products with Pauli matrices can be obtained in n2 time and

marginal inner products with other stabilizer states in n3 time [AG04]. Crucially, these

inner products remain bounded by the eigenvalues of the observable and thereby do not

exponentially increase the range of the distribution.

Schrödinger propagation, which outputs the inner product with a Pauli matrix,

does not have this property: although inner products between Pauli matrices are trivial to

compute, the maximum inner product grows like 2n. Therefore, Schrödinger propagation

is only viable when we are interested in the probability of measuring a particular state

and only a constant number of discarded qubits. On the other hand, there exist contrived

observables that only Schrödinger propagation can handle. If the observable is the tensor

product of many non-stabilizer states, then neither Heisenberg propagation nor stabilizer

propagation runs efficiently. (Indeed, calculating inner products of stabilizer states with

tensor products of many non-stabilizer states is a key slow step in stabilizer rank techniques

[BG16, Bravyi&18].)

Heisenberg propagation applies the sampling method (1) (2) to the observable E,

so cost is measured by D(E). The following facts, proven in [HC16], show that Heisenberg

propagation can handle the observables most common in quantum circuits.

Proposition 6.5. D(σ) = 1 for σ ∈ Pn.
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Proposition 6.6. If |φ〉 is a stabilizer state, then D(|φ〉 〈φ|) = 1.

Proposition 6.7. D is multiplicative: D(A⊗B) = D(A) · D(B).

6.2.3 Hyper-Octahedral States

A central observation of this work is that Pauli matrix decompositions can produce

similar simulational power as decompositions over stabilizer states. Here we show that

despite their simplicity, Pauli matrix decompositions are more powerful with regards to the

input state of the circuit. The number of samples required for Heisenberg propagation does

not depend at all on the input state (19). For Schrödinger propagation we observe:

1. there exist states supported by Schrödinger propagation unsupported by stabilizer

propagation, and

2. sufficiently depolarized states can actively decrease the number of samples required.

From the definition of the stabilizer norm, D can be viewed as the L1 norm of the

Bloch vector ~x of ρ. The equation ||~x||1 ≤ 1 defines the surface and interior of a hyper-

octahedron, motivating the following definition.

Definition 6.8. Hyper-octahedral states ρ satisfy D(ρ) ≤ 1. These states do not increase

the number of samples for Schrödinger propagation.

To see (B), we simply observe that the interior of the octahedron satisfies D(ρ) =

||~x||1 < 1. D is minimized at the n-qubit maximally mixed state whereD(I/2n) = 1/2n. The

following result, proved in [HC16], shows that all stabilizer mixtures are hyper-octahedral.

Proposition 6.9. For states ρ, D(ρ) ≤ R(ρ).
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This fact classifies mixed states into three categories: stabilizer mixtures, non-

stabilizer hyper-octahedral states, and magic states. For the single qubit, the first two

categories coincide (the qubit stabilizer polytope is an octahedron). We plot a cross-section

of the two-qubit Bloch sphere in FIG. 6.1, showing that all of these categories are non-empty.

FIG. 6.2 shows the relative quantity of these states according to the Hilbert-Schmidt measure

[ZS03]. Stabilizer mixtures occupy a tiny fraction of all mixed states, whereas more than

half are hyper-octahedral.

From the standpoint of quantum resource theories, hyper-octahedral states are in-

teresting because they are similar to the ‘bound’ states discussed in [VFGE12, HWVE14,

DH15, ACB12]: they contain non-stabilizer mixed states that can be efficiently simulated.

But unlike R, tracing out qubits can increase D. Hadamard eigenstates |H〉 are magic

states that let Clifford circuits attain universal quantum computation, but |H〉 ⊗ (I/2) is

hyper-octahedral. Hyper-octahedral states are not bound for magic state distillation in the

same sense as those in [VFGE12]: there are operations that can be simulated efficiently by

stabilizer propagation that increase D. Schrödinger propagation cannot simulate operations

that increase D.

6.2.4 Channel Classification

While the classification of states gave rise to only three categories, the classification

of channels is not so simple. FIG. 6.3 shows eight categories, all of which are non-empty.

Here are examples of each:

M Non-Clifford unitaries, such as the T gate.

CSH Clifford unitaries, measuring a qubit in a Pauli basis (without discarding it), and very
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Stabilizer
Mixtures

Hyper-
Octahedral

Magic

⍴(x,y)

x

y

Figure 6.1: Visualization of a cross section of the two-qubit Bloch sphere, given by:

ρ(x, y) = σII
4 + x(σXX + σZZ − σY Y ) + y(σZI + σIZ)

Two-Qubit States

Non-Stabilizer
Hyper-Octahedral

Magic

Stabilizer Mixtures
0.8%

43.6%

55.6%

Figure 6.2: Relative quantity of two-qubit mixed states, based on one million samples via
the Hilbert-Schmidt measure. Hyper-octahederal states are plentiful for two-qubits, despite
not existing for the single qubit.
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depolarized non-Clifford unitaries.

SH Mildly depolarized non-Clifford unitaries, e.g. the T gate with fidelity 0.551 / f ≤

2−1/2 (FIG. 6.5).

C Most adaptive Clifford gates: gates performed based on the outcome of a measurement

(Proposition 6.15).

H Any non-Pauli reset channel (Proposition 6.14).

CH Pauli reset channels [Bennink&17].

S, CS Channels adjoints for H, HC, respectively.

To obtain the relative proportions of these categories akin to FIG. 6.2 we leverage

channel-state duality. Our definition of postselective channels in section 6.5 is specifically

chosen to make the correspondence between two-qubit mixed states and qubit-to-qubit chan-

nels a bijection. We sample states according to the Hilbert-Schmidt measure and classify

their corresponding channels. Most channels in practice are either unital, trace preserving

or both. It is not obvious how to restrict sampling to these measure-zero subspaces. Instead,

we sample from the full Hilbert Schmidt measure, and then project onto the Bloch-subspaces

corresponding to unital and/or trace preserving channels.

FIG. 6.4 shows the resulting proportions. For qubit-to-qubit channels, Pauli propa-

gation techniques permit simulation of a significant fraction of the circuit components which

are a superset of those simulable by stabilizer propagation. As before, it is not clear that

this demonstrates that Pauli propagation is significantly more useful in practice, since most

quantum circuits are dominated by a few specific types channels.
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R(φ̄Λ) = 1

Stabilizer
Propagation

D(Λ) ≤ 1

Schrödinger
Propagation

D(Λ†) ≤ 1

Heisenberg
Propagation

S

CS

C

CSH

SH

CH

H

M

Figure 6.3: A Venn Diagram of quantum channels that illustrates our naming convention.
The channels not efficient under any strategy are category M.

In the following we give evidence for the above examples. To do so, we phrase D(Λ)

in terms of the Pauli transfer matrix of Λ.

Definition 6.10. The Pauli Transfer Matrix (PTM) of a quantum channel Λ taking n qubits

to m qubits has elements (RΛ)ij = 2−mTr(σiΛ(σj)) such that Λ(ρ) = 2−n
∑
i,j(RΛ)ijσiTr(ρσj).

We take σ1 = I.

Intuitively, the columns of RΛ are the Bloch vectors of Λ(σi). The following obser-

vations are useful and trivial to prove.

Proposition 6.11. D(Λ) = ‖RΛ‖1, where ‖·‖1 is the induced L1-norm, i.e. the largest

column L1-norm.

Proposition 6.12. RTΛ = RΛ†

Corollary 6.13. D(Λ†) = ‖RΛ‖∞, where ‖·‖∞ is the induced L∞-norm, i.e. the largest

row L1-norm.

The PTM of a Clifford gate is a signed permutation matrix and the PTMs of Pauli

basis measurements are signed permutations of diag(1, 1, 0, 0). Their Choi states are also
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readily shown the be stabilizer mixtures, so these channels are CSH as claimed.

6.2.5 Depolarized Rotations

Many useful unitaries take the form e−iθσ/2 with σ ∈ Pn. Via some Clifford trans-

formations these can be obtained from the qubit unitary e−iθσZ/2. In this section we consider

composing this unitary with depolarizing noise, obtaining a family of channels Λθ,f where

f is the fidelity.

The PTMs of the unitary e−θσZ/2 and depolarizing noise are respectively:

Rθ =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 Rf =


1 0 0 0
0 f 0 0
0 0 f 0
0 0 0 f


Composing these two channels simply involves multiplying the two PTMs, resulting

in:

RΛf,θ =


1 0 0 0
0 f cos θ −f sin θ 0
0 f sin θ f cos θ 0
0 0 0 f

 (6.20)

D(Λf,θ) = D(Λ†r,θ) = max
(
1, f |cos θ|+ f |sin θ|

)
(6.21)

We plot the family in FIG. 6.5, showing that there are channels simulable by Pauli

propagation methods that are not simulable by stabilizer propagation. The boundary of

D ≤ 1 given by |cos θ| + |sin θ| = 1 forms a diamond. The depolarized T gate becomes SH

when f ≤ 2−1/2 ≈ 0.707, and becomes CSH when f / 0.551.
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6.2.6 Reset Channels

Pauli reset channels can be described as projecting into the +1 eigenspace of some

σ ∈ Pn as in [Bennink&17]. Alternatively we can use Clifford transformations to convert σ

to σZ , converting the channel to tracing out a single qubit and replacing it with |0〉. We

generalize the notion of a reset channel Λρ to tracing out n qubits and replacing them with

an n-qubit state ρ. To make the channel trace preserving we write Λρ(σ) = Tr(σ) · ρ.

Proposition 6.14. If Λρ is a reset channel, D(Λ†) = 1.

Proof. The entries of the PTM of Λρ are the following:

(RΛρ)ij = 2−nTr(σiΛρ(σj)) =

{
2−nTr(σiρ) σj = I

0 σj 6= I

All rows except for the first are zero. The entries are bounded −1 ≤ 2−nTr(σiρ) ≤ 1 and

the top left entry is 1. Thus the maximum column L1 norm is 1, and Proposition 6.13 tells

us that D(Λ†) = 1.

Observe that the first row is actually the Bloch vector of ρ (including the identity

component) scaled by 2n. So unless ρ is the maximally mixed state the first row’s L1 norm

is > 1, so the channel is not simulable by Schrödinger propogation, and its adjoint is not

simulable by Heisenberg propogation.

The Choi state of Λρ is I
2n ⊗ ρ, so Λρ is simulable by stabilizer propagation when ρ

is a stabilizer mixture.

6.2.7 Adaptive Channels

Adaptive channels consist of making a σZ measurement, and then conditionally

applying a channel based on the measurement outcome. While Pauli propagation techniques
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are stronger than stabilizer propagation in many respects, adaptive channels are their key

weak point. This remains true even if the measured qubit is not discarded, so we are not

conflating the cost of tracing out qubits with the cost of adaptivity.

Proposition 6.15. Let Λ be a quantum channel with PTM RΛ. Let A(Λ) be the adaptive

channel that conditionally applies Λ based on a σZ measurement on some qubit that is not

discarded post-measurement. Then:

D(A(Λ)) = 1 + max
i

∑
i 6=j

|Rij | ≤ 1 +D(Λ†) (6.22)

D(A(Λ)†) = 1 + max
j

∑
i 6=j

|Rij | ≤ 1 +D(Λ) (6.23)

Corollary 6.16. A(Λ) is supported by Pauli propagation methods if and only if the PTM

of Λ is diagonal.

So Pauli propagation methods are not ‘closed under adaptivity’: A(Λ) can be non-

simulable even if Λ is simulable. Stabilizer propagation on the other hand is closed under

adaptivity.

Proof of Proposition 6.15. Let Λ take n qubits to m qubits. The measurement of the first

qubit projects into the space spanned by I, σZ on the first qubit.

A(Λ)(I ⊗ σj) =

(
σj 0
0 Λ(σj)

)
=

(
σj 0
0

∑
k Rkjσk

)
A(Λ)(σZ ⊗ σj) =

(
σj 0
0 −Λ(σj)

)
=

(
σj 0
0 −

∑
k Rkjσk

)

The output remains in the space spanned by I, σZ on the first qubit, so the only nonzero
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entries of the PTM are:

1

2m+1
Tr ((I ⊗ σi) ·A(Λ)(I ⊗ σj)) =

1

2
(δij +Rij)

1

2m+1
Tr ((σZ ⊗ σi) ·A(Λ)(I ⊗ σj)) =

1

2
(δij −Rij)

1

2m+1
Tr ((I ⊗ σi) ·A(Λ)(σZ ⊗ σj)) =

1

2
(δij −Rij)

1

2m+1
Tr ((σZ ⊗ σi) ·A(Λ)(σZ ⊗ σj)) =

1

2
(δij +Rij)

Applying the definition of channel stabilizer norm:

D(A(Λ)) =
1

2
max
i

∑
j

(|δij +Rij |+ |δij −Rij |)

= 1 + max
i

∑
i 6=j

|Rij | �

6.3 Numerical Results

Algorithms based on Monte Carlo averages have favorable memory requirements

and admit massive parallelization. We demonstrate these practical advantages via the per-

formance of a GPU implementation written in CUDA [Wilt13].

Following previous tests of near-Clifford algorithms [Bravyi&18] we simulate the

Quantum Approximate Optimization Algorithm (QAOA) on E3LIN2 [FG14]. We generate

m random independent linear equations acting on three qubits a, b, c ∈ [n] of the form

xa ⊕ xb ⊕ xc = dj for j ∈ [m]. Each qubit appears in at most m/10 equations. Let

σ
(j)
Z = σZ,a ⊗ σZ,b ⊗ σZ,c be σZ acting on the qubits corresponding to equation j. Our goal

is to estimate the observable

C =
1

2

∑
j∈[m]

(−1)djσ
(j)
Z
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since C + m/2 is the number of satisfied equations. We estimate the expectation of this

observable with the state

|γ, β〉 = e−iβBe−iγC |+⊗n〉

where B =
∑
i∈[n] σX,i and β = π/4.

Heisenberg propagation is most appropriate for this problem, with performance

D(C) = m/2 and D(e±iγσ
(j)
Z ) = | sin γ| + | cos γ|. Although the unitary e±iγσ

(j)
Z appears m

times in the circuit, at most 3(m/10− 1) + 1 can act non-trivially on any term in C. Thus

the accuracy of the simulation is given by:

εHeis =
m√
2N
·
√

ln
2

δ
· (| sin γ|+ | cos γ|)3(m/10−1)+1

As pointed out by [Bravyi&18], a protocol by van den Nest [VendenNest09] gives an

efficient Monte Carlo protocol for estimating 〈C〉 with error εNest = m√
N
·
√

ln 2
δ . We utilize

the van den Nest estimate 〈C〉Nest to verify the Heisenberg propagation estimate 〈C〉Heis.

Writing effective CUDA applications demands careful memory management. Im-

plementing stabilizer propagation via the Aaronson-Gottesman tableau algorithm would be

a serious computer engineering task. In contrast, the increased simplicity of Pauli prop-

agation algorithms permits a very simple implementation. We furthermore utilize bitwise

operations to express the logic in a compact and efficient manner. Despite the better scaling

it was ultimately necessary to also implement the van den Nest protocol in CUDA due to

the sheer performance improvement over a Python implementation.

For every data point we collected 230 ≈ 1 billion samples in 25 minutes using a

laptop GPU (GeForce GTX 1050 Ti). We fix n = 32 qubits and δ = 0.01 throughout, and

vary γ for a single instance with m = 40 equations (Figure 6.6, top). Then we set γ = π/8,

199



maximizing D(e±iγσ
(j)
Z ) at

√
2, and perform a scaling analysis with instances up to m = 80

(Figure 6.6, bottom).

Hoeffding’s inequality gives a worst-case upper bound for the accuracy of the esti-

mate, potentially very far from the actual error. This is the case here: for m ' 60 we have

εHeis ≥ 1 predicting that 〈C〉Heis is useless, but we observe that the actual error is ≤ 0.01.

Furthermore the actual accuracy does not seem to scale proportionally with εHeis as we vary

γ and m.

6.4 Conclusion

Recent interest in near-Clifford simulation [Bennink&17, PWB15, BG16, Bravyi&18]

and the (non-)contextuality of Clifford circuits [HWVE14, Raussendorf&15, Bermejo-Vega&16,

Delfosse&16] demonstrates that there is still much to be learned about embedding symmetry

into Hilbert space. The qubit Clifford group appears different from the Clifford group in odd

dimensions, where the discrete Wigner function [Gross06] has led to well-behaved resource

theories [HC16, VFGE12, VMGE13] and associated simulation algorithms [PBG17]. We ob-

serve that the qubit analogue of the Wigner function is just a Bloch vector, and our analysis

of the resulting algorithms sheds further light into the differences between the even and odd-

dimensional cases. Furthermore, the simplicity of Pauli propagation algorithms along with

their improved performance for many quantum channels make them a compelling addition

to near-Clifford simulation techniques.
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6.5 Postselective Quantum Channels

In this section we define postselective quantum channels. These include all trace

preserving channels, and all ‘sensible’ non-trace-preserving channels. Furthermore, there

is a bijection between postselective channels taking HA to HB and density operators on

HB ⊗HA, which is essential for FIG. 5 and Theorem 6.4.

Completely positive maps Λ with 0 ≤ Tr(Λ(ρ)) ≤ Tr(ρ) have an operational inter-

pretation: the associated channels can ‘fail’ or ‘abort’ the computation by yielding 0. For

example, let Λ be the channel that measures in the σZ basis and postselects on obtaining

|0〉. Then Λ(|1〉 〈1|) = 0, and Λ(|+〉 〈+|) = 1
2 |0〉 〈0|.

Definition 6.17. Let Λ be a completely positive map from HA to HB. Let |BellA〉 ∈

HA ⊗HA be a Bell state for HA, i.e. if {|i〉} are a basis for HA then:

|BellA〉 =
1√

dim(HA)

∑
i

|i〉 ⊗ |i〉 (6.24)

The un-normalized Choi state φΛ of Λ is the resulting state when Λ is applied

to one half of |BellA〉.

φΛ = (Λ⊗ I)(|BellA〉 〈BellA|) ∈ HB ⊗HA (6.25)

Tr(φΛ) of Λ can be less than 1 if Λ is not trace preserving. Let φ̄Λ = φΛ/Tr(φΛ) be

the normalized Choi state with trace 1. This distinction is crucial.

To calculate the output of a channel Λ(ρ) given its Choi state φΛ we compute:

Λ(ρ) = dim(HA) · TrA
(
φΛ(I ⊗ ρT )

)
(6.26)
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Crucially we use φΛ, not φ̄Λ. To explain why, consider a Choi state φ̄Λ = |00〉 〈00|.

If we apply the equation above to φ̄Λ we obtain Λ(ρ) = 2 · |0〉 〈0| · 〈0| ρT |0〉, so Λ(|0〉 〈0|) =

2 |0〉 〈0| which makes no sense. The fact that φΛ is under-normalized takes care of this

constant.

Given a normalized Choi state φ̄Λ, e.g. |00〉 〈00|, how do we determine φΛ? In

general, φΛ is not unique. Consider channels Λ(ρ) and Λ′(ρ) = p · 0 + (1 − p)Λ(ρ), i.e. Λ′

aborts with probability p and otherwise applies Λ. Both channels have the same φ̄Λ, but

φΛ′ = pφΛ.

However, Λ′ is somewhat silly: aborting the computation should be a tool for

postselection and should not happen regardless of the input state. For all sensible channels

there should exist an input state where the postselection succeeds with probability 1. To

associate all φ̄Λ to a unique φΛ we restrict our attention to the following quantum channels.

Definition 6.18. A completely positive map Λ represents a postselective quantum chan-

nel if:

1. Λ is trace-non-increasing: for all positive-semidefinite ρ, Λ satisfies 0 ≤ Tr(Λ(ρ)) ≤

Tr(ρ),

2. the postselection can be satisfied: there exists a normalized pure state |ψ〉 such that

Tr(Λ(|ψ〉 〈ψ|)) = 1.

Among these channels we can uniquely obtain φΛ from φ̄Λ, so there is a bijection

between normalized mixed states and postselective quantum channels. Let φΛ = pΛφ̄Λ.

Then:

1

pΛ
= dim(HA) ·max

|ψ〉
Tr
(
φ̄Λ(I ⊗ (|ψ〉 〈ψ|)T )

)
(6.27)
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For example, if φ̄Λ = |00〉 〈00| then |ψ〉 = |0〉 maximizes 1/pΛ at 2, so φΛ =

1
2 |00〉 〈00| and Λ(ρ) = |0〉 〈0| · 〈0| ρT |0〉. Incidentally, pΛ is the probability of postselection

succeeding when Λ is applied to the Bell state.

6.6 Simulating Channels whose Choi States are Stabilizer Mixtures

In this section we prove Theorem 6.4: Stabilizer propagation can efficiently simulate

a quantum channel Λ if and only if the robustness of its Choi state R(φΛ) is 1. This criterion

also captures postselective quantum channels, and thereby all sensible non-trace-preserving

channels.

All results of [SC19] generalize neatly to postselective channels. Assuming famil-

iarity with the work, the definition of magic capacity C(Λ) remains identical and the chan-

nel robustness R∗(Λ) can be obtained via convex optimization over linear combinations

of un-normalized Choi states of stabilizer channels. It is easy to see that Theorem 2,

R(φΛ) ≤ C(Λ) ≤ R∗(Λ), still holds. Their Lemma 2, R(φ̄Λ) = 1 implies C(Λ) = 1, is our

Theorem 3.2.

Theorem 6.4 (rephrased). Consider a postselective channel Λ : HA → HB. The follow-

ing statements are equivalent.

1. The channel’s normalized Choi state φ̄Λ is a probabilistic mixture of stabilizer states,

so R(φ̄Λ) = 1.

2. If Λ is applied to any subset of the qubits of any large stabilizer state |ψ〉, one can

efficiently sample from a probability distribution over stabilizer states and ‘abort’ whose

mean is the resulting state.

203



Proof: 2. implies 1. Say a channel Λ is simulable. Apply Λ to one half of the state |BellA〉,

a stabilizer state. The resulting Choi state is probabilistic mixture of stabilizer states and

‘abort’:

φΛ = p0 · 0 +
∑
i

pi |φi〉 〈φi| (6.28)

φ̄Λ =
φΛ

Tr(φΛ)
=

1

1− p0

∑
i

pi |φi〉 〈φi| (6.29)

Since pi/(1−p0) is a probability distribution, φ̄Λ is also a probabilistic mixture of stabilizer

states.

Proof: 1. implies 2. Say we are given

φ̄Λ =
∑
i

piφ̄Γi (6.30)

where φ̄Γi are pure stabilizer states with corresponding pure operations Γi. Our goal is to

obtain an efficiently computable probability distribution over stabilizer states and ‘abort’

of Λ applied to some subset of the qubits of a stabilizer state |ψ〉. The channel acts on a

constant number of qubits, so we can compute anything we want about it. The stabilizer

state, however, may live in a Hilbert space of exponential dimension. Using φΛ = pΛφ̄Λ:

φΛ = pΛ

∑
i

pi
pΓi

φΓi (6.31)

All of the quantities pΛ, pi and pΓi can be obtained quickly. Now we apply (6.26), but we

extend Λ and Γi from the constant size Hilbert space to Λ̃ and Γ̃i which act on the large

Hilbert space containing |ψ〉.

Λ̃(|ψ〉 〈ψ|) = pΛ

∑
i

pi
pΓi

Γ̃i(|ψ〉 〈ψ|) (6.32)
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Crucially, Γ̃i(|ψ〉 〈ψ|), the right-hand side of (6.26), is an inner product between pure

stabilizer states φΓ and |ψ〉 and is therefore a pure stabilizer state that can be computed in

polynomial time. Since Γ̃i may be non-trace-preserving, Γ̃i(|ψ〉 〈ψ|) may not be normalized.

Let |γi〉 be the normalized pure stabilizer state:

|γi〉 〈γi| = Γ̃i(|ψ〉 〈ψ|)
/

Tr(Γ̃i(|ψ〉 〈ψ|)) (6.33)

We write Λ̃(|ψ〉 〈ψ|) as a weighted sum over normalized pure stabilizer states |γi〉.

Λ̃(|ψ〉 〈ψ|) =
∑
i

pΛ
pi
pΓi

Tr(Γ̃i(|ψ〉 〈ψ|)) · |γi〉 〈γi| (6.34)

The weights are positive and one can see that they sum to less than 1 by tak-

ing the trace of both sides. Furthermore since φ̄Γi are pure stabilizer states, the number

Tr(Γ̃i(|ψ〉 〈ψ|)) and stabilizer state |γi〉 〈γi| are efficiently computable.

Thus, to simulate Λ acting on |ψ〉 we sample:

|γi〉 〈γi| w.p. pΛ
pi
pΓi

Tr(Γ̃i(|ψ〉 〈ψ|)) (6.35)

0 w.p. 1−
∑
i

pΛ
pi
pΓi

Tr(Γ̃i(|ψ〉 〈ψ|)). � (6.36)
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Table: Circuit components that can be simulated efficiently
[Bennink&17, HC16]

Stabilizer propagation

What input states
Stabilizer mixtures

are efficient to simulate?

Depolarized T gate Efficient when fidelity / 0.551

Reset channels Pauli reset channels efficient

Adaptive gates Adaptive Cliffords efficient

Marginal observables
Efficient

Pauli observables

This work: Pauli propagation algorithms

Heisenberg propagation Schrödinger propagation

What input states Any separable state, Hyper-octahedral states,

are efficient to simulate? Stabilizer mixtures Noisy states reduce runtime

Depolarized T gate Efficient when fidelity ≤ 2−1/2 ≈ 0.707

Reset channels All reset channels efficient
Generally inefficient

Adaptive gates Generally inefficient

Marginal observables
Efficient Generally inefficient

Pauli observables

Table 6.1: Summary of the results of Section 6.2. All algorithms take polynomial time to
sample, but the number of samples scales exponentially in the number of inefficient circuit
components. Efficient components do not increase runtime.

Relative Quantity of Qubit-To-Qubit Channels

   All Channels

 

Trace Preserving ChannelsUnital Channels

Schrödinger

Magic

22%

77%

Magic

Heisenberg

CH
6%

39%

55%

Magic

  5%

Schrödinger

88%

CS
7%

CS

1%

Heisenberg

Magic

Schrödinger

CSH

SH
25%

54%

 8%

 8%

  5%

Unital and TP Channels

FIG. 4: Relative quantity of of qubit-to-qubit quantum channels, based on 100 000 random
two-qubit density matrices obtained via the Hilbert-Schmidt measure. After obtaining the
PTM we optionally set the first column or row to [1,0,0,0] to enforce unitality or trace
preservation respectively [Greenbaum15]. We utilize the cvxpy library [DB16] to compute
R and use a tolerance of 10−6 throughout.
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Figure 6.5: Qubit quantum channels Λf,θ obtained by an application of the unitary e−iθσZ/2

followed by depolarizing noise with fidelity f . The region simulable by Pauli propagation
(SH) is larger than that simulable by stabilizer propagation (CSH).
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Figure 6.6: Comparison of Hoeffding error bound εHeis to error as estimated by the van
den Nest protocol |〈C〉Nest − 〈C〉Heis| for 32 qubits. Top: m = 40 and varying γ. Bottom:
γ = π/8 and varying m.
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